Human Pose estimation with TensorFlow framework

Overview

Human Pose Estimation with TensorFlow

Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the DeeperCut and ArtTrack papers:

Eldar Insafutdinov, Leonid Pishchulin, Bjoern Andres, Mykhaylo Andriluka and Bernt Schiele DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model. In European Conference on Computer Vision (ECCV), 2016

Eldar Insafutdinov, Mykhaylo Andriluka, Leonid Pishchulin, Siyu Tang, Evgeny Levinkov, Bjoern Andres and Bernt Schiele ArtTrack: Articulated Multi-person Tracking in the Wild. In Conference on Computer Vision and Pattern Recognition (CVPR), 2017

For more information visit http://pose.mpi-inf.mpg.de

Prerequisites

The implementation is in Python 3 and TensorFlow. We recommended using conda to install the dependencies. First, create a Python 3.6 environment:

conda create -n py36 python=3.6
conda activate py36

Then, install basic dependencies with conda:

conda install numpy scikit-image pillow scipy pyyaml matplotlib cython

Install TensorFlow and remaining packages with pip:

pip install tensorflow-gpu easydict munkres

When running training or prediction scripts, please make sure to set the environment variable TF_CUDNN_USE_AUTOTUNE to 0 (see this ticket for explanation).

If your machine has multiple GPUs, you can select which GPU you want to run on by setting the environment variable, eg. CUDA_VISIBLE_DEVICES=0.

Demo code

Single-Person (if there is only one person in the image)

# Download pre-trained model files
$ cd models/mpii
$ ./download_models.sh
$ cd -

# Run demo of single person pose estimation
$ TF_CUDNN_USE_AUTOTUNE=0 python3 demo/singleperson.py

Multiple People

# Compile dependencies
$ ./compile.sh

# Download pre-trained model files
$ cd models/coco
$ ./download_models.sh
$ cd -

# Run demo of multi person pose estimation
$ TF_CUDNN_USE_AUTOTUNE=0 python3 demo/demo_multiperson.py

Training models

Please follow these instructions

Citation

Please cite ArtTrack and DeeperCut in your publications if it helps your research:

@inproceedings{insafutdinov2017cvpr,
    title = {ArtTrack: Articulated Multi-person Tracking in the Wild},
    booktitle = {CVPR'17},
    url = {http://arxiv.org/abs/1612.01465},
    author = {Eldar Insafutdinov and Mykhaylo Andriluka and Leonid Pishchulin and Siyu Tang and Evgeny Levinkov and Bjoern Andres and Bernt Schiele}
}

@article{insafutdinov2016eccv,
    title = {DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model},
    booktitle = {ECCV'16},
    url = {http://arxiv.org/abs/1605.03170},
    author = {Eldar Insafutdinov and Leonid Pishchulin and Bjoern Andres and Mykhaylo Andriluka and Bernt Schiele}
}
Owner
Eldar Insafutdinov
Eldar Insafutdinov
A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics, sequence features, and user profiles.

CCasGNN A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics,

5 Apr 29, 2022
[CVPR21] LightTrack: Finding Lightweight Neural Network for Object Tracking via One-Shot Architecture Search

LightTrack: Finding Lightweight Neural Networks for Object Tracking via One-Shot Architecture Search The official implementation of the paper LightTra

Multimedia Research 290 Dec 24, 2022
Extension to fastai for volumetric medical data

FAIMED 3D use fastai to quickly train fully three-dimensional models on radiological data Classification from faimed3d.all import * Load data in vari

Keno 26 Aug 22, 2022
Official repo for AutoInt: Automatic Integration for Fast Neural Volume Rendering in CVPR 2021

AutoInt: Automatic Integration for Fast Neural Volume Rendering CVPR 2021 Project Page | Video | Paper PyTorch implementation of automatic integration

Stanford Computational Imaging Lab 149 Dec 22, 2022
Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training".

Mixup-Data-Dependency Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training". Running Alternating Line Exp

Muthu Chidambaram 0 Nov 11, 2021
An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020

UnpairedSR An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020 turn RCAN(modified) -- xmodel(xilinx

JiaKui Hu 10 Oct 28, 2022
Public scripts, services, and configuration for running a smart home K3S network cluster

makerhouse_network Public scripts, services, and configuration for running MakerHouse's home network. This network supports: TODO features here For mo

Scott Martin 1 Jan 15, 2022
免费获取http代理并生成proxifier配置文件

freeproxy 免费获取http代理并生成proxifier配置文件 公众号:台下言书 工具说明:https://mp.weixin.qq.com/s?__biz=MzIyNDkwNjQ5Ng==&mid=2247484425&idx=1&sn=56ccbe130822aa35038095317

说书人 32 Mar 25, 2022
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023
FindFunc is an IDA PRO plugin to find code functions that contain a certain assembly or byte pattern, reference a certain name or string, or conform to various other constraints.

FindFunc: Advanced Filtering/Finding of Functions in IDA Pro FindFunc is an IDA Pro plugin to find code functions that contain a certain assembly or b

213 Dec 17, 2022
Exploring the link between uncertainty estimates obtained via "exact" Bayesian inference and out-of-distribution (OOD) detection.

Uncertainty-based OOD detection Exploring the link between uncertainty estimates obtained by "exact" Bayesian inference and out-of-distribution (OOD)

Christian Henning 1 Nov 05, 2022
Marine debris detection with commercial satellite imagery and deep learning.

Marine debris detection with commercial satellite imagery and deep learning. Floating marine debris is a global pollution problem which threatens mari

Inter Agency Implementation and Advanced Concepts 56 Dec 16, 2022
This code is an implementation for Singing TTS.

MLP Singer This code is an implementation for Singing TTS. The algorithm is based on the following papers: Tae, J., Kim, H., & Lee, Y. (2021). MLP Sin

Heejo You 22 Dec 23, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 662 Nov 20, 2022
AutoML library for deep learning

Official Website: autokeras.com AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras

Keras 8.7k Jan 08, 2023
Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Adri1G 1 Mar 23, 2022
Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator

DRL-robot-navigation Deep Reinforcement Learning for mobile robot navigation in ROS Gazebo simulator. Using Twin Delayed Deep Deterministic Policy Gra

87 Jan 07, 2023
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022