Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

Overview

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data

arXiv License: MIT

Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl

| Project Page | Paper | Poster | Slides | Video |

1

This repository includes the official and maintained PyTorch implementation of the paper OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data.

Abstract

Convolutional neural networks (CNNs) are the current state-of-the-art meta-algorithm for volumetric segmentation of medical data, for example, to localize COVID-19 infected tissue on computer tomography scans or the detection of tumour volumes in magnetic resonance imaging. A key limitation of 3D CNNs on voxelised data is that the memory consumption grows cubically with the training data resolution. Occupancy networks (O-Nets) are an alternative for which the data is represented continuously in a function space and 3D shapes are learned as a continuous decision boundary. While O-Nets are significantly more memory efficient than 3D CNNs, they are limited to simple shapes, are relatively slow at inference, and have not yet been adapted for 3D semantic segmentation of medical data. Here, we propose Occupancy Networks for Semantic Segmentation (OSS-Nets) to accurately and memory-efficiently segment 3D medical data. We build upon the original O-Net with modifications for increased expressiveness leading to improved segmentation performance comparable to 3D CNNs, as well as modifications for faster inference. We leverage local observations to represent complex shapes and prior encoder predictions to expedite inference. We showcase OSS-Net's performance on 3D brain tumour and liver segmentation against a function space baseline (O-Net), a performance baseline (3D residual U-Net), and an efficiency baseline (2D residual U-Net). OSS-Net yields segmentation results similar to the performance baseline and superior to the function space and efficiency baselines. In terms of memory efficiency, OSS-Net consumes comparable amounts of memory as the function space baseline, somewhat more memory than the efficiency baseline and significantly less than the performance baseline. As such, OSS-Net enables memory-efficient and accurate 3D semantic segmentation that can scale to high resolutions.

If you find this research useful in your work, please cite our paper:

@inproceedings{Reich2021,
        title={{OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data}},
        author={Reich, Christoph and Prangemeier, Tim and Cetin, {\"O}zdemir and Koeppl, Heinz},
        booktitle={British Machine Vision Conference},
        year={2021},
        organization={British Machine Vision Association},
}

Dependencies

All required Python packages can be installed by:

pip install -r requirements.txt

To install the official implementation of the Padé Activation Unit [1] (taken from the official repository) run:

cd pade_activation_unit/cuda
python setup.py build install

The code is tested with PyTorch 1.8.1 and CUDA 11.1 on Linux with Python 3.8.5! Using other PyTorch and CUDA versions newer than PyTorch 1.7.0 and CUDA 10.1 should also be possible.

Data

The BraTS 2020 dataset can be downloaded here and the LiTS dataset can be downloaded here. Please note, that accounts are required to login and downlaod the data on both websites.

The used training and validation split of the BraTS 2020 dataset is available here.

For generating the border maps, necessary if border based sampling is utilized, please use the generate_borders_bra_ts_2020.py and generate_borders_lits.py script.

Trained Models

Table 1. Segmentation results of trained networks. Weights are generally available here and specific models are linked below.

Model Dice () BraTS 2020 IoU () BraTS 2020 Dice () LiTS IoU () LiTS
O-Net [2] 0.7016 0.5615 0.6506 0.4842 - -
OSS-Net A 0.8592 0.7644 0.7127 0.5579 weights BraTS weights LiTS
OSS-Net B 0.8541 0.7572 0.7585 0.6154 weights BraTS weights LiTS
OSS-Net C 0.8842 0.7991 0.7616 0.6201 weights BraTS weights LiTS
OSS-Net D 0.8774 0.7876 0.7566 0.6150 weights BraTS weights LiTS

Usage

Training

To reproduce the results presented in Table 1, we provide multiple sh scripts, which can be found in the scripts folder. Please change the dataset path and CUDA devices according to your system.

To perform training runs with different settings use the command line arguments of the train_oss_net.py file. The train_oss_net.py takes the following command line arguments:

Argument Default value Info
--train False Binary flag. If set training will be performed.
--test False Binary flag. If set testing will be performed.
--cuda_devices "0, 1" String of cuda device indexes to be used. Indexes must be separated by a comma.
--cpu False Binary flag. If set all operations are performed on the CPU. (not recommended)
--epochs 50 Number of epochs to perform while training.
--batch_size 8 Number of epochs to perform while training.
--training_samples 2 ** 14 Number of coordinates to be samples during training.
--load_model "" Path to model to be loaded.
--segmentation_loss_factor 0.1 Auxiliary segmentation loss factor to be utilized.
--network_config "" Type of network configuration to be utilized (see).
--dataset "BraTS" Dataset to be utilized. ("BraTS" or "LITS")
--dataset_path "BraTS2020" Path to dataset.
--uniform_sampling False Binary flag. If set locations are sampled uniformly during training.

Please note that the naming of the different OSS-Net variants differs in the code between the paper and Table 1.

Inference

To perform inference, use the inference_oss_net.py script. The script takes the following command line arguments:

Argument Default value Info
--cuda_devices "0, 1" String of cuda device indexes to be used. Indexes must be separated by a comma.
--cpu False Binary flag. If set all operations are performed on the CPU. (not recommended)
--load_model "" Path to model to be loaded.
--network_config "" Type of network configuration to be utilized (see).
--dataset "BraTS" Dataset to be utilized. ("BraTS" or "LITS")
--dataset_path "BraTS2020" Path to dataset.

During inference the predicted occupancy voxel grid, the mesh prediction, and the label as a mesh are saved. The meshes are saved as PyTorch (.pt) files and also as .obj files. The occupancy grid is only saved as a PyTorch file.

Acknowledgements

We thank Marius Memmel and Nicolas Wagner for the insightful discussions, Alexander Christ and Tim Kircher for giving feedback on the first draft, and Markus Baier as well as Bastian Alt for aid with the computational setup.

This work was supported by the Landesoffensive für wissenschaftliche Exzellenz as part of the LOEWE Schwerpunkt CompuGene. H.K. acknowledges support from the European Re- search Council (ERC) with the consolidator grant CONSYN (nr. 773196). O.C. is supported by the Alexander von Humboldt Foundation Philipp Schwartz Initiative.

References

[1] @inproceedings{Molina2020Padé,
        title={{Pad\'{e} Activation Units: End-to-end Learning of Flexible Activation Functions in Deep Networks}},
        author={Alejandro Molina and Patrick Schramowski and Kristian Kersting},
        booktitle={International Conference on Learning Representations},
        year={2020}
}
[2] @inproceedings{Mescheder2019,
        title={{Occupancy Networks: Learning 3D Reconstruction in Function Space}},
        author={Mescheder, Lars and Oechsle, Michael and Niemeyer, Michael and Nowozin, Sebastian and Geiger, Andreas},
        booktitle={CVPR},
        pages={4460--4470},
        year={2019}
}
Owner
Christoph Reich
Autonomous systems and electrical engineering student @ Technical University of Darmstadt
Christoph Reich
IMBENS: class-imbalanced ensemble learning in Python.

IMBENS: class-imbalanced ensemble learning in Python. Links: [Documentation] [Gallery] [PyPI] [Changelog] [Source] [Download] [知乎/Zhihu] [中文README] [a

Zhining Liu 176 Jan 04, 2023
Really awesome semantic segmentation

really-awesome-semantic-segmentation A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar

Holger Caesar 400 Nov 28, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

AugMax: Adversarial Composition of Random Augmentations for Robust Training Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, an

VITA 112 Nov 07, 2022
Find the Heart simple Python Game

This is a simple Python game for finding a heart emoji. There is a 3 x 3 matrix in which a heart emoji resides. The location of the heart is randomized and is not revealed. The player must guess the

p.katekomol 1 Jan 24, 2022
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 01, 2023
Log4j JNDI inj. vuln scanner

Log-4-JAM - Log 4 Just Another Mess Log4j JNDI inj. vuln scanner Requirements pip3 install requests_toolbelt Usage # make sure target list has http/ht

Ashish Kunwar 66 Nov 09, 2022
Code for the Active Speakers in Context Paper (CVPR2020)

Active Speakers in Context This repo contains the official code and models for the "Active Speakers in Context" CVPR 2020 paper. Before Training The c

43 Oct 14, 2022
Cycle Consistent Adversarial Domain Adaptation (CyCADA)

Cycle Consistent Adversarial Domain Adaptation (CyCADA) A pytorch implementation of CyCADA. If you use this code in your research please consider citi

Hyunwoo Ko 2 Jan 10, 2022
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
Code for Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights

Piggyback: https://arxiv.org/abs/1801.06519 Pretrained masks and backbones are available here: https://uofi.box.com/s/c5kixsvtrghu9yj51yb1oe853ltdfz4q

Arun Mallya 165 Nov 22, 2022
Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision

MLP-Mixer: An all-MLP Architecture for Vision This repo contains PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision. Usage : impo

Rishikesh (ऋषिकेश) 175 Dec 23, 2022
Action Segmentation Evaluation

Reference Action Segmentation Evaluation Code This repository contains the reference code for action segmentation evaluation. If you have a bug-fix/im

5 May 22, 2022
A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders Are Scalable Vision Learners A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementati

Aritra Roy Gosthipaty 59 Dec 10, 2022
A CNN implementation using only numpy. Supports multidimensional images, stride, etc.

A CNN implementation using only numpy. Supports multidimensional images, stride, etc. Speed up due to heavy use of slicing and mathematical simplification..

2 Nov 30, 2021
Improving Object Detection by Label Assignment Distillation

Improving Object Detection by Label Assignment Distillation This is the official implementation of the WACV 2022 paper Improving Object Detection by L

Cybercore Co. Ltd 51 Dec 08, 2022
Detecting drunk people through thermal images using Deep Learning (CNN)

Drunk Detection CNN Detecting drunk people through thermal images using Deep Learning (CNN) Dataset We used thermal images provided by Electronics Lab

Giacomo Ferretti 3 Oct 27, 2022
Official Pytorch implementation for AAAI2021 paper (RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning)

RSPNet Official Pytorch implementation for AAAI2021 paper "RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning" [Suppleme

35 Jun 24, 2022
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip Müller 10 Dec 07, 2022