End-to-end machine learning project for rices detection

Overview

Basmatinet

Welcome to this project folks !

Whether you like it or not this project is all about riiiiice or riz in french. It is also about Deep Learning and MLOPS. So if you want to learn to train and deploy a simple model to recognize rice type basing on a photo, then you are at the right place.

0- Project's Roadmap

This project will consist to:

  • Train a Deep Learning model with Pytorch.
  • Transfert learning from Efficient Net.
  • Data augmentation with Albumentation.
  • Save trained model with early stopping.
  • Track the training with MLFLOW.
  • Serve the model with a Rest Api built with Flask.
  • Encode data in base64 client side before sending to the api server.
  • Package the application in microservice's fashion with Docker.
  • Yaml for configurations file.
  • Passing arguments anywhere it is possible.
  • Orchestrate the prediction service with Kubernetes (k8s) on Google Cloud Platform.
  • Pre-commit git hook.
  • Logging during training.
  • CI with github actions.
  • CD with terraform to build environment on Google Cloud Platform.
  • Save images and predictions in InfluxDB database.
  • Create K8s service endpoint for external InfluxDB database.
  • Create K8s secret for external InfluxDB database.
  • Unitary tests with Pytest (Fixtures and Mocks).

1- Install project's dependencies and packages

This project was developped in conda environment but you can use any python virtual environment but you should have installed some packages that are in basmatinet/requirements.txt

Python version: 3.8.12

# Move into the project root
$ cd basmatinet

# 1st alternative: using pip
$ pip install -r requirements.txt
# 2nd alternative
$ conda install --file requirements.txt

2- Train a basmatinet model

$ python src/train.py "/path/to/rice_image_dataset/" \
                     --batch-size 16 --nb-epochs 200 \
                     --workers 8 --early-stopping 5  \
                     --percentage 0.1 --cuda

3- Dockerize the model and push the Docker Image to Google Container Registry

1st step: Let's build a docker images

# Move into the app directory
$ cd basmatinet/app

# Build the machine learning serving app image
$ docker build -t basmatinet .

# Run a model serving app container outside of kubernetes (optionnal)
$ docker run -d -p 5000:5000 basmatinet

# Try an inference to test the endpoint
$ python frontend.py --filename "../images/arborio.jpg" --host-ip "0.0.0.0"

2nd step: Let's push the docker image into a Google Container Registry. But you should create a google cloud project to have PROJECT-ID and in this case you HOSTNAME will be "gcr.io" and you should enable GCR Api on google cloud platform.

# Re-tag the image and include the container in the image tag
$ docker tag basmatinet [HOSTNAME]/[PROJECT-ID]/basmatinet

# Push to container registry
$ docker push [HOSTNAME]/[PROJECT-ID]/basmatinet

4- Create a kubernetes cluster

First of all you should enable GKE Api on google cloud platform. And go to the cloud shell or stay on your host if you have gcloud binary already installed.

# Start a cluster
$ gcloud container clusters create k8s-gke-cluster --num-nodes 3 --machine-type g1-small --zone europe-west1-b

# Connect to the cluster
$ gcloud container clusters get-credentials k8s-gke-cluster --zone us-west1-b --project [PROJECT_ID]

4- Deploy the application on Kubernetes (Google Kubernetes Engine)

Create the deployement and the service on a kubernetes cluster.

# In the app directory
$ cd basmatinet/app
# Create the namespace
$ kubectl apply -f k8s/namespace.yaml
# Create the deployment
$ kubectl apply -f k8s/basmatinet-deployment.yaml --namespace=mlops-test
# Create the service
$ kubectl apply -f k8s/basmatinet-service.yaml --namespace=mlops-test

# Check that everything is alright with the following command and look for basmatinet-app in the output
$ kubectl get services

# The output should look like
NAME             TYPE           CLUSTER-IP    EXTERNAL-IP     PORT(S)          AGE
basmatinet-app   LoadBalancer   xx.xx.xx.xx   xx.xx.xx.xx   5000:xxxx/TCP      2m3s

Take the EXTERNAL-IP and test your service with the file basmatinet/app/frontend.py . Then you can cook your jollof with some basmatinet!!!

You might also like...
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

 Neural Dynamic Policies for End-to-End Sensorimotor Learning
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

"SOLQ: Segmenting Objects by Learning Queries", SOLQ is an end-to-end instance segmentation framework with Transformer.

SOLQ: Segmenting Objects by Learning Queries This repository is an official implementation of the paper SOLQ: Segmenting Objects by Learning Queries.

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

 WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Task-based end-to-end model learning in stochastic optimization

Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th

Releases(v0.2.0)
  • v0.2.0(May 26, 2022)

    We add image building annd pushing to Google Container Registry. Moreover we add a last step to deploy on a Google Kubernetes Engine cluster. And this the first official release.

    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(May 24, 2022)

Owner
Béranger
Machine Learning Engineer with high interest for Africa.
Béranger
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval project page | arXiv | webvid-data Repository containing the code,

225 Dec 25, 2022
Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

ERICA Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive L

THUNLP 75 Nov 02, 2022
QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

Hust Visual Learning Team 386 Jan 08, 2023
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022
Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

SA-AutoAug Scale-aware Automatic Augmentation for Object Detection Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia [Paper] [Bi

DV Lab 182 Dec 29, 2022
Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance

Nested Graph Neural Networks About Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance.

Muhan Zhang 38 Jan 05, 2023
"SOLQ: Segmenting Objects by Learning Queries", SOLQ is an end-to-end instance segmentation framework with Transformer.

SOLQ: Segmenting Objects by Learning Queries This repository is an official implementation of the paper SOLQ: Segmenting Objects by Learning Queries.

MEGVII Research 179 Jan 02, 2023
TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network

TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network Created by Seunghoon Hong, Junhyuk Oh,

42 Jun 29, 2022
4D Human Body Capture from Egocentric Video via 3D Scene Grounding

4D Human Body Capture from Egocentric Video via 3D Scene Grounding [Project] [Paper] Installation: Our method requires the same dependencies as SMPLif

Miao Liu 37 Nov 08, 2022
Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Hesper 63 Jan 05, 2023
fcn by tensorflow

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

9 May 22, 2022
The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure

miseval: a metric library for Medical Image Segmentation EVALuation The open-source and free to use Python package miseval was developed to establish

59 Dec 10, 2022
PyTorch implementation DRO: Deep Recurrent Optimizer for Structure-from-Motion

DRO: Deep Recurrent Optimizer for Structure-from-Motion This is the official PyTorch implementation code for DRO-sfm. For technical details, please re

Alibaba Cloud 56 Dec 12, 2022
Out-of-boundary View Synthesis towards Full-frame Video Stabilization

Out-of-boundary View Synthesis towards Full-frame Video Stabilization Introduction | Update | Results Demo | Introduction This repository contains the

25 Oct 10, 2022
FastFace: Lightweight Face Detection Framework

Light Face Detection using PyTorch Lightning

Ömer BORHAN 75 Dec 05, 2022
一个多语言支持、易使用的 OCR 项目。An easy-to-use OCR project with multilingual support.

AgentOCR 简介 AgentOCR 是一个基于 PaddleOCR 和 ONNXRuntime 项目开发的一个使用简单、调用方便的 OCR 项目 本项目目前包含 Python Package 【AgentOCR】 和 OCR 标注软件 【AgentOCRLabeling】 使用指南 Pytho

AgentMaker 98 Nov 10, 2022
The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer

ASMA-GAN Anisotropic Stroke Control for Multiple Artists Style Transfer Proceedings of the 28th ACM International Conference on Multimedia The officia

Six_God 146 Nov 21, 2022
Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface.

Gym-TORCS Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface. TORCS is the open-rource realistic

naoto yoshida 400 Dec 27, 2022
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
🛰️ List of earth observation companies and job sites

Earth Observation Companies & Jobs source Portals & Jobs Geospatial Geospatial jobs newsletter: ~biweekly newsletter with geospatial jobs by Ali Ahmad

Dahn 64 Dec 27, 2022