Denoising Normalizing Flow

Overview

Denoising Normalizing Flow

Christian Horvat and Jean-Pascal Pfister 2021

License: MIT

We combine Normalizing Flows (NFs) and Denoising Auto Encoder (DAE) by introducing the Denoising Normalizing Flow (DNF), a generative model able to

  1. approximate the data generating density p(x),
  2. generate new samples from p(x),
  3. infer low-dimensional latent variables.

As a classical NF degenerates for data living on a low-dimensional manifold embedded in high dimensions, the DNF inflates the manifold valued data using noise and learns a denoising mapping similar to DAE.

Related Work

The DNF is highly related to the Manifold Flow introduced by Johann Brehmer and Kyle Cramner. Also, our code is a cabon copy of their implementation with the following additions:

  1. The data can be inflated with Gaussian noise.
  2. We include the DNF as new mode for the ℳ-flow.
  3. New datasets, a thin spiral, a von Mises on a circle, and a mixture of von Mises on a sphere were added.
  4. A new folder, experiments/plots, for generating the images from the paper was added.
  5. A new folder, experiments/benchmarks, for benchmarking the DNF was added.
  6. The evaluate.py was modified and now includes the grid evaluation for the thin spiral and gan2d image manifold, the latent interpolations, the density estimation for the PAE, the latent density estimation on the thin spiral, and the KS statistics for the circle and sphere experiments.

The theoretical foundation of the DNF was developed in Density estimation on low-dimensional manifolds: an inflation-deflation approach.

Data sets

We trained the DNF and ℳ-flow on the following datasets:

Data set Data dimension Manifold dimension Arguments to train.py, and evaluate.py
Thin spiral 2 1 --dataset thin_spiral
2-D StyleGAN image manifold 64 x 64 x 3 2 --dataset gan2d
64-D StyleGAN image manifold 64 x 64 x 3 64 --dataset gan64d
CelebA-HQ 64 x 64 x 3 ? --dataset celeba

To use the model for your own data, you need to create a simulator (see experiments/datasets), and add it to experiments/datasets/init.py. If you have problems with that, please don't hesitate to contact us.

Benchmarks

We benchmark the DNF with the ℳ-flow, Probabilistic Auto Encoder (PAE), and InfoMax Variational Autoencoder. For that, we rely on the original implementations of those models, and modify them where appropriate, see experiments/benchmarks/vae and experiments/benchmarks/pae for more details.

Training & Evaluation

The configurations for the models and hyperparameter settings used in the paper can be found in experiments/configs.

Acknowledgements

We thank Johann Brehmer and Kyle Cramner for publishing their implementation of the Manifold Flow. For the experiments with the Probabilistic Auto-Encoder (V. Böhm and U. Seljak) and InfoMax Variational Autoencoder (A.L. Rezaabad, S. Vishwanath), we used the official implementations of these models. We thank these authors for this possibility.

Owner
CHrvt
CHrvt
Real-Time SLAM for Monocular, Stereo and RGB-D Cameras, with Loop Detection and Relocalization Capabilities

ORB-SLAM2 Authors: Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez (DBoW2) 13 Jan 2017: OpenCV 3 and Eigen 3.3 are now suppor

Raul Mur-Artal 7.8k Dec 30, 2022
Loopy belief propagation for factor graphs on discrete variables, in JAX!

PGMax implements general factor graphs for discrete probabilistic graphical models (PGMs), and hardware-accelerated differentiable loopy belief propagation (LBP) in JAX.

Vicarious 62 Dec 23, 2022
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Weihao Yu 14 Aug 24, 2022
Elastic weight consolidation technique for incremental learning.

Overcoming-Catastrophic-forgetting-in-Neural-Networks Elastic weight consolidation technique for incremental learning. About Use this API if you dont

Shivam Saboo 89 Dec 22, 2022
Generative Adversarial Text to Image Synthesis

Text To Image Synthesis This is a tensorflow implementation of synthesizing images. The images are synthesized using the GAN-CLS Algorithm from the pa

Hao 575 Jan 08, 2023
[CVPR 2022] Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper

template-pose Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions

Van Nguyen Nguyen 92 Dec 28, 2022
Implementation for NeurIPS 2021 Submission: SparseFed

READ THIS FIRST This repo is an anonymized version of an existing repository of GitHub, for the AIStats 2021 submission: SparseFed: Mitigating Model P

2 Jun 15, 2022
PPO is a very popular Reinforcement Learning algorithm at present.

PPO is a very popular Reinforcement Learning algorithm at present. OpenAI takes PPO as the current baseline algorithm. We use the PPO algorithm to train a policy to give the best action in any situat

Rosefintech 11 Aug 23, 2021
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr

Microsoft 306 Dec 29, 2022
PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation

PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation The paper: https://arxiv.org/abs/1704.03296 What makes

Jacob Gildenblat 322 Dec 17, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022
Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)

SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear

Enric Corona 225 Dec 13, 2022
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023
The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store development.

The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store dev

George Rocha 0 Feb 03, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023