Repo for Enhanced Seq2Seq Autoencoder via Contrastive Learning for Abstractive Text Summarization

Related tags

Text Data & NLPesacl
Overview

ESACL: Enhanced Seq2Seq Autoencoder via Contrastive Learning for AbstractiveText Summarization

This repo is for our paper "Enhanced Seq2Seq Autoencoder via Contrastive Learning for AbstractiveText Summarization". Our program is building on top of the Huggingface transformers framework. You can refer to their repo at: https://github.com/huggingface/transformers/tree/master/examples/seq2seq.

Local Setup

Tested with Python 3.7 via virtual environment. Clone the repo, go to the repo folder, setup the virtual environment, and install the required packages:

$ python3.7 -m venv venv
$ source venv/bin/activate
$ pip install -r requirements.txt

Install apex

Based on the recommendation from HuggingFace, both finetuning and eval are 30% faster with --fp16. For that you need to install apex.

$ git clone https://github.com/NVIDIA/apex
$ cd apex
$ pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Data

Create a directory for data used in this work named data:

$ mkdir data

CNN/DM

$ wget https://cdn-datasets.huggingface.co/summarization/cnn_dm_v2.tgz
$ tar -xzvf cnn_dm_v2.tgz
$ mv cnn_cln data/cnndm

XSUM

$ wget https://cdn-datasets.huggingface.co/summarization/xsum.tar.gz
$ tar -xzvf xsum.tar.gz
$ mv xsum data/xsum

Generate Augmented Dataset

$ python generate_augmentation.py \
    --dataset xsum \
    --n 5 \
    --augmentation1 randomdelete \
    --augmentation2 randomswap

Training

CNN/DM

Our model is warmed up using sshleifer/distilbart-cnn-12-6:

$ DATA_DIR=./data/cnndm-augmented/RandominsertionRandominsertion-NumSent-3
$ OUTPUT_DIR=./log/cnndm

$ python -m torch.distributed.launch --nproc_per_node=3  cl_finetune_trainer.py \
  --data_dir $DATA_DIR \
  --output_dir $OUTPUT_DIR \
  --learning_rate=5e-7 \
  --per_device_train_batch_size 16 \
  --per_device_eval_batch_size 16 \
  --do_train --do_eval \
  --evaluation_strategy steps \
  --freeze_embeds \
  --save_total_limit 10 \
  --save_steps 1000 \
  --logging_steps 1000 \
  --num_train_epochs 5 \
  --model_name_or_path sshleifer/distilbart-cnn-12-6 \
  --alpha 0.2 \
  --temperature 0.5 \
  --freeze_encoder_layer 6 \
  --prediction_loss_only \
  --fp16

XSUM

$ DATA_DIR=./data/xsum-augmented/RandomdeleteRandomswap-NumSent-3
$ OUTPUT_DIR=./log/xsum

$ python -m torch.distributed.launch --nproc_per_node=3  cl_finetune_trainer.py \
  --data_dir $DATA_DIR \
  --output_dir $OUTPUT_DIR \
  --learning_rate=5e-7 \
  --per_device_train_batch_size 16 \
  --per_device_eval_batch_size 16 \
  --do_train --do_eval \
  --evaluation_strategy steps \
  --freeze_embeds \
  --save_total_limit 10 \
  --save_steps 1000 \
  --logging_steps 1000 \
  --num_train_epochs 5 \
  --model_name_or_path sshleifer/distilbart-xsum-12-6 \
  --alpha 0.2 \
  --temperature 0.5 \
  --freeze_encoder \
  --prediction_loss_only \
  --fp16

Evaluation

We have released the following checkpoints for pre-trained models as described in the paper:

CNN/DM

CNN/DM requires an extra postprocessing step.

$ export DATA=cnndm
$ export DATA_DIR=data/$DATA
$ export CHECKPOINT_DIR=./log/$DATA
$ export OUTPUT_DIR=output/$DATA

$ python -m torch.distributed.launch --nproc_per_node=2  run_distributed_eval.py \
    --model_name sshleifer/distilbart-cnn-12-6  \
    --save_dir $OUTPUT_DIR \
    --data_dir $DATA_DIR \
    --bs 16 \
    --fp16 \
    --use_checkpoint \
    --checkpoint_path $CHECKPOINT_DIR
    
$ python postprocess_cnndm.py \
    --src_file $OUTPUT_DIR/test_generations.txt \
    --tgt_file $DATA_DIR/test.target

XSUM

$ export DATA=xsum
$ export DATA_DIR=data/$DATA
$ export CHECKPOINT_DIR=./log/$DATA
$ export OUTPUT_DIR=output/$DATA

$ python -m torch.distributed.launch --nproc_per_node=3  run_distributed_eval.py \
    --model_name sshleifer/distilbart-xsum-12-6  \
    --save_dir $OUTPUT_DIR \
    --data_dir $DATA_DIR \
    --bs 16 \
    --fp16 \
    --use_checkpoint \
    --checkpoint_path $CHECKPOINT_DIR
Owner
Rachel Zheng
Rachel Zheng
Rachel Zheng
Host your own GPT-3 Discord bot

GPT3 Discord Bot Host your own GPT-3 Discord bot i'd host and make the bot invitable myself, however GPT3 terms of service prohibit public use of GPT3

[something hillarious here] 8 Jan 07, 2023
Text Analysis & Topic Extraction on Android App user reviews

AndroidApp_TextAnalysis Hi, there! This is code archive for Text Analysis and Topic Extraction from user_reviews of Android App. Dataset Source : http

Fitrie Ratnasari 1 Feb 14, 2022
Framework for fine-tuning pretrained transformers for Named-Entity Recognition (NER) tasks

NERDA Not only is NERDA a mesmerizing muppet-like character. NERDA is also a python package, that offers a slick easy-to-use interface for fine-tuning

Ekstra Bladet 141 Dec 30, 2022
Machine learning classifiers to predict American Sign Language .

ASL-Classifiers American Sign Language (ASL) is a natural language that serves as the predominant sign language of Deaf communities in the United Stat

Tarek idrees 0 Feb 08, 2022
AutoGluon: AutoML for Text, Image, and Tabular Data

AutoML for Text, Image, and Tabular Data AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in yo

Amazon Web Services - Labs 5.2k Dec 29, 2022
Translate U is capable of translating the text present in an image from one language to the other.

Translate U is capable of translating the text present in an image from one language to the other. The app uses OCR and Google translate to identify and translate across 80+ languages.

Neelanjan Manna 1 Dec 22, 2021
The SVO-Probes Dataset for Verb Understanding

The SVO-Probes Dataset for Verb Understanding This repository contains the SVO-Probes benchmark designed to probe for Subject, Verb, and Object unders

DeepMind 20 Nov 30, 2022
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

317 Dec 23, 2022
Chinese named entity recognization (bert/roberta/macbert/bert_wwm with Keras)

Chinese named entity recognization (bert/roberta/macbert/bert_wwm with Keras)

2 Jul 05, 2022
NeurIPS'21: Probabilistic Margins for Instance Reweighting in Adversarial Training (Pytorch implementation).

source code for NeurIPS21 paper robabilistic Margins for Instance Reweighting in Adversarial Training

9 Dec 20, 2022
The entmax mapping and its loss, a family of sparse softmax alternatives.

entmax This package provides a pytorch implementation of entmax and entmax losses: a sparse family of probability mappings and corresponding loss func

DeepSPIN 330 Dec 22, 2022
An open source library for deep learning end-to-end dialog systems and chatbots.

DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re

Neural Networks and Deep Learning lab, MIPT 6k Dec 30, 2022
This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection"

Splinter This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection", to

Ori Ram 88 Dec 31, 2022
This repository contains the code for "Generating Datasets with Pretrained Language Models".

Datasets from Instructions (DINO 🦕 ) This repository contains the code for Generating Datasets with Pretrained Language Models. The paper introduces

Timo Schick 154 Jan 01, 2023
Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Jifan Chen 22 Oct 21, 2022
Speech Recognition for Uyghur using Speech transformer

Speech Recognition for Uyghur using Speech transformer Training: this model using CTC loss and Cross Entropy loss for training. Download pretrained mo

Uyghur 11 Nov 17, 2022
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
DeepAmandine is an artificial intelligence that allows you to talk to it for hours, you won't know the difference.

DeepAmandine This is an artificial intelligence based on GPT-3 that you can chat with, it is very nice and makes a lot of jokes. We wish you a good ex

BuyWithCrypto 3 Apr 19, 2022
Script to download some free japanese lessons in portuguse from NHK

Nihongo_nhk This is a script to download some free japanese lessons in portuguese from NHK. It can be executed by installing the packages with: pip in

Matheus Alves 2 Jan 06, 2022