Lingtrain Aligner — ML powered library for the accurate texts alignment.

Overview

Lingtrain Aligner

ML powered library for the accurate texts alignment in different languages.

Cover

Purpose

Main purpose of this alignment tool is to build parallel corpora using two or more raw texts in different languages. Texts should contain the same information (i.e., one text should be a translated analog oh the other text). E.g., it can be the Drei Kameraden by Remarque in German and the Three Comrades — it's translation into English.

Process

There are plenty of obstacles during the alignment process:

  • The translator could translate several sentences as one.
  • The translator could translate one sentence as many.
  • There are some service marks in the text
    • Page numbers
    • Chapters and other section headings
    • Author and title information
    • Notes

While service marks can be handled manually (the tool helps to detect them), the translation conflicts should be handled more carefully.

Lingtrain Aligner tool will do almost all alignment work for you. It matches the sentence pairs automatically using the multilingual machine learning models. Then it searches for the alignment conflicts and resolves them. As output you will have the parallel corpora either as two distinct plain text files or as the merged corpora in widely used TMX format.

Supported languages and models

Automated alignment process relies on the sentence embeddings models. Embeddings are multidimensional vectors of a special kind which are used to calculate a distance between the sentences. Supported languages list depend on the selected backend model.

  • distiluse-base-multilingual-cased-v2
    • more reliable and fast
    • moderate weights size — 500MB
    • supports 50+ languages
    • full list of supported languages can be found in this paper
  • LaBSE (Language-agnostic BERT Sentence Embedding)
    • can be used for rare languages
    • pretty heavy weights — 1.8GB
    • supports 100+ languages
    • full list of supported languages can be found here

Profit

  • Parallel corpora by itself can used as the resource for machine translation models or for linguistic researches.
  • My personal goal of this project is to help people building parallel translated books for the foreign language learning.
You might also like...
Sentence boundary disambiguation tool for Japanese texts (日本語文境界判定器)

Bunkai Bunkai is a sentence boundary (SB) disambiguation tool for Japanese texts. Quick Start $ pip install bunkai $ echo -e '宿を予約しました♪!まだ2ヶ月も先だけど。早すぎ

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Neural text generators like the GPT models promise a general-purpose means of manipulating texts.

Boolean Prompting for Neural Text Generators Neural text generators like the GPT models promise a general-purpose means of manipulating texts. These m

Biterm Topic Model (BTM): modeling topics in short texts
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Text Classification in Turkish Texts with Bert
Text Classification in Turkish Texts with Bert

You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification

Code for our paper
Code for our paper "Mask-Align: Self-Supervised Neural Word Alignment" in ACL 2021

Mask-Align: Self-Supervised Neural Word Alignment This is the implementation of our work Mask-Align: Self-Supervised Neural Word Alignment. @inproceed

A pytorch implementation of the ACL2019 paper
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Tensorflow Implementation of A Generative Flow for Text-to-Speech via Monotonic Alignment Search

Comments
  • File Already Exists

    File Already Exists

    Делаю docker pull lingtrain/aligner:v4 Загружаю текстовый файл и...

    image

    После вот такого предупреждения ничего не происходит Причём оно вылазит на любой текстовый файл

    opened by puffofsmoke 1
  • Fix XML creation:

    Fix XML creation:

    • prevent parent tag duplication for (langs, author, title)
    • add tags for tmx export
    • use 'direction' for splitting paragraphs
    • do not use bs4 (generates incorrect xml), change to lxml
    opened by BorisNA 0
  • A error when I use “splitter.split_by_sentences_wrapper”,please help check the error

    A error when I use “splitter.split_by_sentences_wrapper”,please help check the error

    when I use “splitted_from = splitter.split_by_sentences_wrapper(text1_prepared, lang_from)” return list,

    But I see that there will be a conflict when insert sqlite ,specific error:

    File "ling_test.py", line 36, in aligner.fill_db(db_path, splitted_from, splitted_to) File "lingtrain_aligner/aligner.py", line 498, in fill_db db.executemany("insert into languages(key, val) values(?,?)", [("from", lang_from), ("to", lang_to)]) sqlite3.InterfaceError: Error binding parameter 1 - probably unsupported type.

    opened by Amen-bang 5
  • Add text splitting into small parts

    Add text splitting into small parts

    The current version ignores the H1-H5 headers that were added by user. But when book was translate text from chapter 1 will be translate as a chapter 1 text into another language. You can use this fact and split a big text to small parts.

    Next idea - try split a big text to small blocks automatically: Select a few sentences from original text(for example 10 sentences) and using loop try to find translate block in the thanslated text.

    You can use the next psedocode:

    left_array = original_sentences[100:110]
    sum=[]
    for i=50;i<150 do:
       right_array_candidate=translated_sentences[i:i+10]
       sum[i]=sum(cosunuse_distance(left_array,right_array_candidate))
    
    rigth_array=get_index_with_max_value(sum)
    
    left_text_split_index=left_array[0]
    rigth_text_split_index=rigth_array[0]
    
    opened by AigizK 0
Releases(0.1.0)
Owner
Sergei Averkiev
Software Engineer. Eager to learn languages and machine learning approaches. Live in Moscow.
Sergei Averkiev
SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering.

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
Source code and dataset for ACL 2019 paper "ERNIE: Enhanced Language Representation with Informative Entities"

ERNIE Source code and dataset for "ERNIE: Enhanced Language Representation with Informative Entities" Reqirements: Pytorch=0.4.1 Python3 tqdm boto3 r

THUNLP 1.3k Dec 30, 2022
Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)

CIRPLANT This repository contains the code and pre-trained models for Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT) For d

Zheyuan (David) Liu 29 Nov 17, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag helps humans intuitively express how they think about their files using tags and machine learning. Represent how you think using tags. Find what you look for using semantic search for your t

Ravn Tech, Inc. 166 Jan 07, 2023
Sentence Embeddings with BERT & XLNet

Sentence Transformers: Multilingual Sentence Embeddings using BERT / RoBERTa / XLM-RoBERTa & Co. with PyTorch This framework provides an easy method t

Ubiquitous Knowledge Processing Lab 9.1k Jan 02, 2023
华为商城抢购手机的Python脚本 Python script of Huawei Store snapping up mobile phones

HUAWEI STORE GO 2021 说明 基于Python3+Selenium的华为商城抢购爬虫脚本,修改自近两年没更新的项目BUY-HW,为女神抢Nova 8(什么时候华为开始学小米玩饥饿营销了?) 原项目的登陆以及抢购部分已经不可用,本项目对原项目进行了改正以适应新华为商城,并增加一些功能

ZhangLiang 111 Dec 22, 2022
This is a GUI program that will generate a word search puzzle image

Word Search Puzzle Generator Table of Contents About The Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing Cont

11 Feb 22, 2022
This repository details the steps in creating a Part of Speech tagger using Trigram Hidden Markov Models and the Viterbi Algorithm without using external libraries.

POS-Tagger This repository details the creation of a Part-of-Speech tagger using Trigram Hidden Markov Models to predict word tags in a word sequence.

Raihan Ahmed 1 Dec 09, 2021
An assignment on creating a minimalist neural network toolkit for CS11-747

minnn by Graham Neubig, Zhisong Zhang, and Divyansh Kaushik This is an exercise in developing a minimalist neural network toolkit for NLP, part of Car

Graham Neubig 63 Dec 29, 2022
VampiresVsWerewolves - Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition

VampiresVsWerewolves Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition. Our Algorithm finish

Shawn 1 Jan 21, 2022
Crie tokens de autenticação íntegros e seguros com UToken.

UToken - Tokens seguros. UToken (ou Unhandleable Token) é uma bilioteca criada para ser utilizada na geração de tokens seguros e íntegros, ou seja, nã

Jaedson Silva 0 Nov 29, 2022
Diaformer: Automatic Diagnosis via Symptoms Sequence Generation

Diaformer Diaformer: Automatic Diagnosis via Symptoms Sequence Generation (AAAI 2022) Diaformer is an efficient model for automatic diagnosis via symp

Junying Chen 20 Dec 13, 2022
Refactored version of FastSpeech2

Refactored version of FastSpeech2. An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

ILJI CHOI 10 May 26, 2022
Original implementation of the pooling method introduced in "Speaker embeddings by modeling channel-wise correlations"

Speaker-Embeddings-Correlation-Pooling This is the original implementation of the pooling method introduced in "Speaker embeddings by modeling channel

Themos Stafylakis 10 Apr 30, 2022
Conditional Transformer Language Model for Controllable Generation

CTRL - A Conditional Transformer Language Model for Controllable Generation Authors: Nitish Shirish Keskar, Bryan McCann, Lav Varshney, Caiming Xiong,

Salesforce 1.7k Dec 28, 2022
Simple, hackable offline speech to text - using the VOSK-API.

Simple, hackable offline speech to text - using the VOSK-API.

Campbell Barton 844 Jan 07, 2023
Facilitating the design, comparison and sharing of deep text matching models.

MatchZoo Facilitating the design, comparison and sharing of deep text matching models. MatchZoo 是一个通用的文本匹配工具包,它旨在方便大家快速的实现、比较、以及分享最新的深度文本匹配模型。 🔥 News

Neural Text Matching Community 3.7k Jan 02, 2023
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Dec 28, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Highlights The strongest performances Tracker

Multimedia Research 485 Jan 04, 2023
PyJPBoatRace: Python-based Japanese boatrace tools 🚤

pyjpboatrace :speedboat: provides you with useful tools for data analysis and auto-betting for boatrace.

5 Oct 29, 2022