Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Database

Overview

Python cx_Oracle Notebooks, 2022

The repository contains Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Database.

I am releasing them one-by-one.

The final list of notebooks will be:

  • Connecting
  • Queries
  • DML
  • CSV
  • JSON and SODA
  • PL/SQL
  • Objects

You may also be interested in the tutorial Python and Oracle Database Tutorial: Scripting for the Future. This is also found in "LiveLabs" format here, which lets you easily run it in Oracle Cloud.

Setup

An existing Oracle Database is required.

The JSON demo assumes Oracle Database and Oracle Client are 21c.

Install Python 3

See https://www.python.org/downloads/

Install Jupyter

See https://jupyter.org/install:

pip install notebook

Install cx_Oracle

See https://cx-oracle.readthedocs.io/en/latest/user_guide/installation.html:

pip install cx_Oracle

Install some libraries used by the examples:

pip install numpy matplotlib

To setup the cx_Oracle sample tables

On macOS set up libclntsh by finding the library directory

python
import cx_Oracle
cx_Oracle
exit()

With the appropriate path from above, create a sym link:

ln -s $HOME/Downloads/instantclient_19_8/libclntsh.dylib $HOME/.local/lib/python3.9/site-packages/

Create the cx_Oracle sample schema

Clone/download https://github.com/oracle/python-cx_Oracle/tree/master/samples

git clone https://github.com/oracle/python-cx_Oracle.git
rm -rf python-cx_Oracle/doc python-cx_Oracle/odpi python-cx_Oracle/src python-cx_Oracle/test python-cx_Oracle/*.* python-cx_Oracle/.git*

cd python-cx_Oracle/samples

Review python-cx_Oracle/samples/README.md

Edit python-cx_Oracle/samples/sample_env.py and set desired credentials and connection string

export CX_ORACLE_SAMPLES_MAIN_USER=pythondemo
export CX_ORACLE_SAMPLES_MAIN_PASSWORD=welcome
export CX_ORACLE_SAMPLES_EDITION_USER=pythoneditions
export CX_ORACLE_SAMPLES_EDITION_PASSWORD=welcome
export CX_ORACLE_SAMPLES_EDITION_NAME=python_e1
export CX_ORACLE_SAMPLES_CONNECT_STRING=localhost/orclpdb1
export CX_ORACLE_SAMPLES_DRCP_CONNECT_STRING=localhost/orclpdb1:pooled
export CX_ORACLE_SAMPLES_ADMIN_USER=system
export CX_ORACLE_SAMPLES_ADMIN_PASSWORD=oracle

Install the schema

python setup_samples.py

Start Jupyter:

cd ../..
jupyter notebook

Load each notebook *.ipynb file and step through it

Before running the notebooks cells, edit the connect string(s) near the top of each notebook.

The Connection notebook has an example that connects to Oracle Cloud. The wallet setup shown in the notebook is needed for this to be runnable. Also run export CLOUD_PASSWORD="whatever" before starting that notebook.

Owner
Christopher Jones
https://twitter.com/ghrd
Christopher Jones
ADB-IP-ROTATION - Use your mobile phone to gain a temporary IP address using ADB and data tethering

ADB IP ROTATE This an Python script based on Android Debug Bridge (adb) shell sc

Dor Bismuth 2 Jul 12, 2022
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022
Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph

Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph Model Description Open-CyKG is a framework that is constructed using an attenti

Injy Sarhan 34 Jan 05, 2023
Notebooks, slides and dataset of the CorrelAid Machine Learning Winter School

CorrelAid Machine Learning Winter School Welcome to the CorrelAid ML Winter School! Task The problem we want to solve is to classify trees in Roosevel

CorrelAid 12 Nov 23, 2022
Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz).

Blender-Cave-Generation Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz). Installation

2 Dec 28, 2022
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow.

RL algorithm PPO and IRL algorithm AIRL written with Tensorflow. They have a parallel sampling feature in order to increase computation speed (especially in high-performance computing (HPC)).

Fangjian Li 3 Dec 28, 2021
Code for LIGA-Stereo Detector, ICCV'21

LIGA-Stereo Introduction This is the official implementation of the paper LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based

Xiaoyang Guo 75 Dec 09, 2022
Efficient Speech Processing Tookit for Automatic Speaker Recognition

Sugar Efficient Speech Processing Tookit for Automatic Speaker Recognition | HuggingFace | What's New EfficientTDNN: Efficient Architecture Search for

WangRui 14 Sep 14, 2022
This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detection', CVPR 2019.

Code-and-Dataset-for-CapSal This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detec

lu zhang 48 Aug 19, 2022
Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

23 Dec 07, 2022
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022
Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som

Jounghee Kim 46 Dec 19, 2022
This repo contains the source code and a benchmark for predicting user's utilities with Machine Learning techniques for Computational Persuasion

Machine Learning for Argument-Based Computational Persuasion This repo contains the source code and a benchmark for predicting user's utilities with M

Ivan Donadello 4 Nov 07, 2022
Automatic Calibration for Non-repetitive Scanning Solid-State LiDAR and Camera Systems

ACSC Automatic extrinsic calibration for non-repetitive scanning solid-state LiDAR and camera systems. System Architecture 1. Dependency Tested with U

KINO 192 Dec 13, 2022
Code for KDD'20 "An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph"

Heterogeneous INteract and aggreGatE (GraphHINGE) This is a pytorch implementation of GraphHINGE model. This is the experiment code in the following w

Jinjiarui 69 Nov 24, 2022
Elevation Mapping on GPU.

Elevation Mapping cupy Overview This is a ros package of elevation mapping on GPU. Code are written in python and uses cupy for GPU calculation. * pla

Robotic Systems Lab - Legged Robotics at ETH Zürich 183 Dec 19, 2022
General Vision Benchmark, a project from OpenGVLab

Introduction We build GV-B(General Vision Benchmark) on Classification, Detection, Segmentation and Depth Estimation including 26 datasets for model e

174 Dec 27, 2022
Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

2 Dec 28, 2021
Neural Module Network for VQA in Pytorch

Neural Module Network (NMN) for VQA in Pytorch Note: This is NOT an official repository for Neural Module Networks. NMN is a network that is assembled

Harsh Trivedi 111 Nov 24, 2022
Evaluating Privacy-Preserving Machine Learning in Critical Infrastructures: A Case Study on Time-Series Classification

PPML-TSA This repository provides all code necessary to reproduce the results reported in our paper Evaluating Privacy-Preserving Machine Learning in

Dominik 1 Mar 08, 2022