A PaddlePaddle version image model zoo.

Overview

Paddle-Image-Models

GitHub forks GitHub Repo stars Pypi Downloads GitHub release (latest by date including pre-releases) GitHub

English | 简体中文

A PaddlePaddle version image model zoo.

Install Package

Usage

  • Quick Start

    import paddle
    from ppim import rednet_26
    
    # Load the model
    model, val_transforms = rednet_26(pretrained=True)
    
    # Model summary 
    paddle.summary(model, input_size=(1, 3, 224, 224))
    
    # Random a input
    x = paddle.randn(shape=(1, 3, 224, 224))
    
    # Model forword
    out = model(x)
  • Finetune

    import paddle
    import paddle.nn as nn
    import paddle.vision.transforms as T
    from paddle.vision import Cifar100
    
    from ppim import rexnet_1_0
    
    # Load the model
    model, val_transforms = rexnet_1_0(pretrained=True, class_dim=100)
    
    # Use the PaddleHapi Model
    model = paddle.Model(model)
    
    # Set the optimizer
    opt = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters())
    
    # Set the loss function
    loss = nn.CrossEntropyLoss()
    
    # Set the evaluate metric
    metric = paddle.metric.Accuracy(topk=(1, 5))
    
    # Prepare the model 
    model.prepare(optimizer=opt, loss=loss, metrics=metric)
    
    # Set the data preprocess
    train_transforms = T.Compose([
        T.Resize(256, interpolation='bicubic'),
        T.RandomCrop(224),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    ])
    
    # Load the Cifar100 dataset
    train_dataset = Cifar100(mode='train', transform=train_transforms, backend='pil')
    val_dataset = Cifar100(mode='test',  transform=val_transforms, backend='pil')
    
    # Finetune the model 
    model.fit(
        train_data=train_dataset, 
        eval_data=val_dataset, 
        batch_size=256, 
        epochs=2, 
        eval_freq=1, 
        log_freq=1, 
        save_dir='save_models', 
        save_freq=1, 
        verbose=1, 
        drop_last=False, 
        shuffle=True,
        num_workers=0
    )

Model Zoo

You might also like...
Object detection and instance segmentation toolkit based on PaddlePaddle.
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.

Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS

Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Official PaddlePaddle implementation of Paint Transformer
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

Remote sensing change detection tool based on PaddlePaddle

PdRSCD PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完

Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Comments
  • 无法引入ppim

    无法引入ppim


    AttributeError Traceback (most recent call last) in 1 import paddle ----> 2 from ppim import rednet_26 3 4 # 使用 PPIM whl 包加载模型 5 model, val_transforms = rednet_26(pretrained=True, return_transforms=True)

    ~.conda\envs\paddle\lib\site-packages\ppim_init_.py in ----> 1 import ppim.models as models 2 3 from ppim.models import * 4 from inspect import isfunction, isclass 5

    ~.conda\envs\paddle\lib\site-packages\ppim\models_init_.py in 3 from ppim.models.tnt import tnt_s, TNT 4 from ppim.models.t2t import t2t_vit_7, t2t_vit_10, t2t_vit_12, t2t_vit_14, t2t_vit_19, t2t_vit_24, t2t_vit_t_14, t2t_vit_t_19, t2t_vit_t_24, t2t_vit_14_384, t2t_vit_24_token_labeling ----> 5 from ppim.models.pvt import pvt_ti, pvt_s, pvt_m, pvt_l, PyramidVisionTransformer 6 from ppim.models.pit import pit_ti, pit_s, pit_xs, pit_b, pit_ti_distilled, pit_s_distilled, pit_xs_distilled, pit_b_distilled, PoolingTransformer, DistilledPoolingTransformer 7 from ppim.models.coat import coat_ti, coat_m, coat_lite_ti, coat_lite_m, CoaT

    ~.conda\envs\paddle\lib\site-packages\ppim\models\pvt.py in 5 import paddle.vision.transforms as T 6 ----> 7 import ppim.models.vit as vit 8 9 from ppim.models.common import add_parameter, load_model

    AttributeError: module 'ppim' has no attribute 'models'

    opened by hanknewbird 0
Releases(1.1.0)
Owner
AgentMaker
Focus on deep learning tools
AgentMaker
SurfEmb (CVPR 2022) - SurfEmb: Dense and Continuous Correspondence Distributions

SurfEmb SurfEmb: Dense and Continuous Correspondence Distributions for Object Pose Estimation with Learnt Surface Embeddings Rasmus Laurvig Haugard, A

Rasmus Haugaard 56 Nov 19, 2022
Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Deep Deterministic Uncertainty This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic

Jishnu Mukhoti 69 Nov 28, 2022
Automatic 2D-to-3D Video Conversion with CNNs

Deep3D: Automatic 2D-to-3D Video Conversion with CNNs How To Run To run this code. Please install MXNet following the official document. Deep3D requir

Eric Junyuan Xie 1.2k Dec 30, 2022
deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and different optimization choices

deep_nn_model_with_only_python_100%_test_accuracy deep learning model with only python and numpy with test accuracy 99 % on mnist dataset and differen

0 Aug 28, 2022
Implementation of the final project of the course DDA6309 Probabilistic Graphical Model

Task-aware Joint CWS and POS (TCwsPos) This is the implementation of the final project of the course DDA6309 Probabilistic Graphical Models, The Chine

Peng 1 Dec 26, 2021
Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation

TensorFlow White Paper Notes Features Notes broken down section by section, as well as subsection by subsection Relevant links to documentation, resou

Sam Abrahams 437 Oct 09, 2022
DanceTrack: Multiple Object Tracking in Uniform Appearance and Diverse Motion

DanceTrack DanceTrack is a benchmark for tracking multiple objects in uniform appearance and diverse motion. DanceTrack provides box and identity anno

260 Dec 28, 2022
Emblaze - Interactive Embedding Comparison

Emblaze - Interactive Embedding Comparison Emblaze is a Jupyter notebook widget for visually comparing embeddings using animated scatter plots. It bun

CMU Data Interaction Group 77 Nov 24, 2022
Awesome Long-Tailed Learning

Awesome Long-Tailed Learning This repo pays specially attention to the long-tailed distribution, where labels follow a long-tailed or power-law distri

Stomach_ache 284 Jan 06, 2023
A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

xiezhenyu 2 Oct 11, 2022
Reproducing code of hair style replacement method from Barbershorp.

Barbershorp Reproducing code of hair style replacement method from Barbershorp. Also reproduces II2S, an improved version of Image2StyleGAN. Requireme

1 Dec 24, 2021
[PAMI 2020] Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation This repository contains the source code for

Yun-Chun Chen 60 Nov 25, 2022
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
A clear, concise, simple yet powerful and efficient API for deep learning.

The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for

Gluon API 2.3k Dec 17, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc

Sebastian Raschka 4.2k Jan 02, 2023
Code for the paper "Learning-Augmented Algorithms for Online Steiner Tree"

Learning-Augmented Algorithms for Online Steiner Tree This is the code for the paper "Learning-Augmented Algorithms for Online Steiner Tree". Requirem

0 Dec 09, 2021
Code for ICCV2021 paper PARE: Part Attention Regressor for 3D Human Body Estimation

PARE: Part Attention Regressor for 3D Human Body Estimation [ICCV 2021] PARE: Part Attention Regressor for 3D Human Body Estimation, Muhammed Kocabas,

Muhammed Kocabas 277 Jan 03, 2023
LiDAR R-CNN: An Efficient and Universal 3D Object Detector

LiDAR R-CNN: An Efficient and Universal 3D Object Detector Introduction This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object

TuSimple 295 Jan 05, 2023
Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Vision Transformer Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: T

Eunkwang Jeon 1.4k Dec 28, 2022