Bundle Graph Convolutional Network

Overview

Bundle Graph Convolutional Network

This is our Pytorch implementation for the paper:

Jianxin Chang, Chen Gao, Xiangnan He, Depeng Jin and Yong Li. Bundle Graph Convolutional Network, Paper in ACM DL or Paper in arXiv. In SIGIR'20, Xi'an, China, July 25-30, 2020.

Author: Jianxin Chang ([email protected])

Introduction

Bundle Graph Convolutional Network (BGCN) is a bundle recommendation solution based on graph neural network, explicitly re-constructing the two kinds of interaction and an affiliation into the graph. With item nodes as the bridge, graph convolutional propagation between user and bundle nodes makes the learned representations capture the item level semantics.

Citation

If you want to use our codes and datasets in your research, please cite:

@inproceedings{BGCN20,
  author    = {Jianxin Chang and 
               Chen Gao and 
               Xiangnan He and 
               Depeng Jin and 
               Yong Li},
  title     = {Bundle Recommendation with Graph Convolutional Networks},
  booktitle = {Proceedings of the 43nd International {ACM} {SIGIR} Conference on
               Research and Development in Information Retrieval, {SIGIR} 2020, Xi'an,
               China, July 25-30, 2020.},
  year      = {2020},
}

Requirement

The code has been tested running under Python 3.7.0. The required packages are as follows:

  • torch == 1.2.0
  • numpy == 1.17.4
  • scipy == 1.4.1
  • temsorboardX == 2.0

Usage

The hyperparameter search range and optimal settings have been clearly stated in the codes (see the 'CONFIG' dict in config.py).

  • Train
python main.py 
  • Futher Train

Replace 'sample' from 'simple' to 'hard' in CONFIG and add model file path obtained by Train to 'conti_train', then run

python main.py 
  • Test

Add model path obtained by Futher Train to 'test' in CONFIG, then run

python eval_main.py 

Some important hyperparameters:

  • lrs

    • It indicates the learning rates.
    • The learning rate is searched in {1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3}.
  • mess_dropouts

    • It indicates the message dropout ratio, which randomly drops out the outgoing messages.
    • We search the message dropout within {0, 0.1, 0.3, 0.5}.
  • node_dropouts

    • It indicates the node dropout ratio, which randomly blocks a particular node and discard all its outgoing messages.
    • We search the node dropout within {0, 0.1, 0.3, 0.5}.
  • decays

    • we adopt L2 regularization and use the decays to control the penalty strength.
    • L2 regularization term is tuned in {1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2}.
  • hard_window

    • It indicates the difficulty of sampling in the hard-negative sampler.
    • We set it to the top thirty percent.
  • hard_prob

    • It indicates the probability of using hard-negative samples in the further training stage.
    • We set it to 0.8 (0.4 in the item level and 0.4 in the bundle level), so the probability of simple samples is 0.2.

Dataset

We provide one processed dataset: Netease.

  • user_bundle_train.txt

    • Train file.
    • Each line is 'userID\t bundleID\n'.
    • Every observed interaction means user u once interacted bundle b.
  • user_item.txt

    • Train file.
    • Each line is 'userID\t itemID\n'.
    • Every observed interaction means user u once interacted item i.
  • bundle_item.txt

    • Train file.
    • Each line is 'bundleID\t itemID\n'.
    • Every entry means bundle b contains item i.
  • Netease_data_size.txt

    • Assist file.
    • The only line is 'userNum\t bundleNum\t itemNum\n'.
    • The triplet denotes the number of users, bundles and items, respectively.
  • user_bundle_tune.txt

    • Tune file.
    • Each line is 'userID\t bundleID\n'.
    • Every observed interaction means user u once interacted bundle b.
  • user_bundle_test.txt

    • Test file.
    • Each line is 'userID\t bundleID\n'.
    • Every observed interaction means user u once interacted bundle b.
Owner
M.S. student from E.E., Tsinghua University.
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
Reinforcement Knowledge Graph Reasoning for Explainable Recommendation

Reinforcement Knowledge Graph Reasoning for Explainable Recommendation This repository contains the source code of the SIGIR 2019 paper "Reinforcement

Yikun Xian 197 Dec 28, 2022
NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs.

NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in

420 Jan 04, 2023
A TensorFlow recommendation algorithm and framework in Python.

TensorRec A TensorFlow recommendation algorithm and framework in Python. NOTE: TensorRec is not under active development TensorRec will not be receivi

James Kirk 1.2k Jan 04, 2023
Graph Neural Networks for Recommender Systems

This repository contains code to train and test GNN models for recommendation, mainly using the Deep Graph Library (DGL).

217 Jan 04, 2023
Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks

SR-HGNN ICDM-2020 《Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks》 Environments python 3.8 pytorch-1.6 DGL 0.5.

xhc 9 Nov 12, 2022
Code for ICML2019 Paper "Compositional Invariance Constraints for Graph Embeddings"

Dependencies NOTE: This code has been updated, if you were using this repo earlier and experienced issues that was due to an outaded codebase. Please

Avishek (Joey) Bose 43 Nov 25, 2022
Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer

Introduction This is the repository of our accepted CIKM 2021 paper "Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Trans

SeqRec 29 Dec 09, 2022
Respiratory Health Recommendation System

Respiratory-Health-Recommendation-System Respiratory Health Recommendation System based on Air Quality Index Forecasts This project aims to provide pr

Abhishek Gawabde 1 Jan 29, 2022
Handling Information Loss of Graph Neural Networks for Session-based Recommendation

LESSR A PyTorch implementation of LESSR (Lossless Edge-order preserving aggregation and Shortcut graph attention for Session-based Recommendation) fro

Tianwen CHEN 62 Dec 03, 2022
Bundle Graph Convolutional Network

Bundle Graph Convolutional Network This is our Pytorch implementation for the paper: Jianxin Chang, Chen Gao, Xiangnan He, Depeng Jin and Yong Li. Bun

55 Dec 25, 2022
Incorporating User Micro-behaviors and Item Knowledge 59 60 3 into Multi-task Learning for Session-based Recommendation

MKM-SR Incorporating User Micro-behaviors and Item Knowledge into Multi-task Learning for Session-based Recommendation Paper data and code This is the

ciecus 38 Dec 05, 2022
Elliot is a comprehensive recommendation framework that analyzes the recommendation problem from the researcher's perspective.

Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation

Information Systems Lab @ Polytechnic University of Bari 215 Nov 29, 2022
Cloud-based recommendation system

This project is based on cloud services to create data lake, ETL process, train and deploy learning model to implement a recommendation system.

Yi Ding 1 Feb 02, 2022
Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems.

Persine, the Persona Engine Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems. It has a simple interface a

Jonathan Soma 87 Nov 29, 2022
基于个性化推荐的音乐播放系统

MusicPlayer 基于个性化推荐的音乐播放系统 Hi, 这是我在大四的时候做的毕设,现如今将该项目开源。 本项目是基于Python的tkinter和pygame所著。 该项目总体来说,代码比较烂(因为当时水平很菜)。 运行的话安装几个基本库就能跑,只不过里面的数据还没有上传至Github。 先

Cedric Niu 6 Nov 19, 2022
Deep recommender models using PyTorch.

Spotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various poin

Maciej Kula 2.8k Dec 29, 2022
Codes for AAAI'21 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'

DHCN Codes for AAAI 2021 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'. Please note that the default link

Xin Xia 124 Dec 14, 2022
Code for my ORSUM, ACM RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation

HeroGRAPH Code for my ORSUM @ RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation Paper, workshop pro

Qiang Cui 9 Sep 14, 2022
EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON

exemplo-de-sistema-especialista EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON Resumo O objetivo de auxiliar o usuário na escolha

Josue Lopes 3 Aug 31, 2021