Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

Overview

RuleRec

These are our datasets and implementation for the paper:

Weizhi Ma, Min Zhang, Yue Cao, Woojeong Jin, Chenyang Wang, Yiqun Liu, Shaoping Ma, and Xiang Ren. 2019. Jointly Learning Explainable Rules for Recommendation with Knowledge Graph. In TheWebConf'19.

Please cite our paper if you use our datasets or codes. Thanks!

@inproceedings{ma2019jointly,
  title={Jointly Learning Explainable Rules for Recommendation with Knowledge Graph},
  author={Ma, Weizhi and Zhang, Min and Cao, Yue and Jin, Woojeong and Wang, Chenyang and Liu, Yiqun and Ma, Shaoping and Ren, Xiang},
  booktitle={The World Wide Web Conference},
  pages={1210--1221},
  year={2019},
  organization={ACM}
}

If you have any problem about this work, you can contact Weizhi Ma (mawz12 AT hotmail.com).

RuleRec Datasets

The constructed datasets (two scenarios: Amazon cellphone and Amazon electronic) can be found here, which contain several parts:

Recommendation Data:

train.txt, test.txt: user-item interaction data.

Formatting: 
	user id \t item id

item_dic.txt: A python dic, key = item id in Amazon, value = item id here.

Item Attributes:

title.txt, brand.txt, description.txt: item attributes.

Formatting: 
	item id in Amazon \t the title/brand/description of this item

Item Associations:

also_buy.txt, also_view.txt, buy_after_view.txt, buy_together.txt: item associations.

Formatting:
	item id in Amazon \t items that have also\_buy/also\_view/buy\_after\_view/buy\_together association with this item, split by ' '

Entity Linking Data:

title_entities.txt, brand_entities.txt, description_entities.txt: entity linking results on freebase.

Formatting:
	item id in Amazon \t entity name \t entity id in Freebase

Path data:

KGData/*/rule_score.txt: As Freebase is an extremely large knowledge graph, only the related paths in the knowledge graph are recorded in this file. The head and tail entity of each path linked by at least one item.

training_pairs.txt and usercandidates.txt are two files sampled for rule learning and recommendation. You can replace them with other sampling results. The formatting of training_pairs.txt is 'user id : [positive item id, negative item id]'.



Besides, the original Amazon datasets (including user-item interaction history and item associations) are provided by Professor Mcauley. You can download them here.

Rule Learning Codes

If you want to use these codes, you should download RuleRec dataset and put them together first.

getItemItemDic.py: Enumerate all possible rules.

selectRules.py: Rule selection (rule features for jointly learning will also be generated in this step).

getFeatures.py: Calculate features based on the selected rules for item recommendation.

Environments: Python 3.6.3

sklearn = 0.19.1

numpy = 1.13.3

# Example:
> python getItemItemDic.py Cellphone abu
> python selectRules.py Cellphone abu 50
> python getFeatures.py Cellphone abu 50

RuleRec(BPRMF) Codes:

This implementation is based on MyMediaLiteJava. Both codes and jar file are provided.

The evaluation datasets can be downloaded from here, which is generated from RuleRec Data and contains both rule selection features and rule features.

Environments: Java, version 1.6 or later

# Example 1: Use Cellphone dataset
> java -jar BPRMF.jar --recommender=BPRMF --training-file=./RuleRecInput/Cellphone/trainingSet.txt --test-file=./RuleRecInput/Cellphone/testSet.txt --candidateFile=./RuleRecInput/Cellphone/candidates.txt --trainingPairFile=./RuleRecInput/Cellphone/trainingPairs.txt --trainingFeatures=./RuleRecInput/Cellphone/trainingFeatures.txt --testFeatures=./RuleRecInput/Cellphone/testFeatures.txt --learningRate=0.1 --usermodel=0 --iter-times=30 --rule-weight=0.005  --ruleWeightNumber=200 --resultFile=result.txt 
# output:[email protected]=0.34968 [email protected]=0.48024 [email protected]=0.28287 [email protected] num_users=27840 num_items=100 num_lists=27840

# Example 2: Use Cellphone dataset with jointly learning
> java -jar BPRMF.jar --recommender=BPRMF --training-file=./RuleRecInput/Cellphone/trainingSet.txt --test-./RuleRecInput/Cellphone/testSet.txt --candidateFile=./RuleRecInput/Cellphone/candidates.txt --trainingPairFile=./RuleRecInput/Cellphone/trainingPairs.txt --trainingFeatures=./RuleRecInput/Cellphone/trainingFeatures.txt --testFeatures=./RuleRecInput/Cellphone/testFeatures.txt --learningRate=0.1 --usermodel=0 --iter-times=30 --rule-weight=0.005  --ruleWeightNumber=200 --resultFile=result.txt --trainTogether=2  --lossType=sigmoid --lossCombineRate=0.2 --ruleselectTrain=./RuleRecInput/Cellphone/ruleselect/ --ruleselectResult=./RuleRecInput/Cellphone/ruleselect/ 
# output:[email protected]=0.36430 [email protected]=0.49429 [email protected]=0.29536 [email protected]=0.23214 num_users=27840 num_items=100 num_lists=27840

# Example 3: Use Electronic dataset
> java -jar BPRMF.jar --recommender=BPRMF --training-file=./RuleRecInput/Electronic/trainingSet.txt --test-file=./RuleRecInput/Electronic/testSet.txt --candidateFile=./RuleRecInput/Electronic/candidates.txt --trainingPairFile=./RuleRecInput/Electronic/trainingPairs.txt --trainingFeatures=./RuleRecInput/Electronic/trainingFeatures.txt --testFeatures=./RuleRecInput/Electronic/testFeatures.txt --learningRate=0.05 --ruleWeightNumber=200 --usermodel=0 --iter-times=30 --rule-weight=0.01 --resultFile=result.txt 
# output:[email protected]=0.20694 [email protected]=0.29726 [email protected]=0.17284 [email protected]=0.13483 num_users=18223 num_items=100 num_lists=18223

# Example 4: Use Electronic dataset with jointly learning
> java -jar BPRMF.jar --recommender=BPRMF --training-file=./RuleRecInput/Electronic/trainingSet.txt --test-file=./RuleRecInput/Electronic/testSet.txt --candidateFile=./RuleRecInput/Electronic/candidates.txt --trainingPairFile=./RuleRecInput/Electronic/trainingPairs.txt --trainingFeatures=./RuleRecInput/Electronic/trainingFeatures.txt --testFeatures=./RuleRecInput/Electronic/testFeatures.txt --learningRate=0.05 --ruleWeightNumber=200 --usermodel=0 --iter-times=30 --rule-weight=0.01 --resultFile=result.txt --trainTogether=2  --lossType=sigmoid --lossCombineRate=0.005 --ruleselectTrain=./RuleRecInput/Electronic/ruleselect/ --ruleselectResult=./RuleRecInput/Electronic/ruleselect/ 
# output:[email protected]=0.20798 [email protected]=0.29979 [email protected]=0.17407 [email protected]=0.13570 num_users=18223 num_items=100 num_lists=18223
Recommendation Systems for IBM Watson Studio platform

Recommendation-Systems-for-IBM-Watson-Studio-platform Project Overview In this project, I analyze the interactions that users have with articles on th

Milad Sadat-Mohammadi 1 Jan 21, 2022
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022
A movie recommender which recommends the movies belonging to the genre that user has liked the most.

Content-Based-Movie-Recommender-System This model relies on the similarity of the items being recommended. (I have used Pandas and Numpy. However othe

Srinivasan K 0 Mar 31, 2022
Handling Information Loss of Graph Neural Networks for Session-based Recommendation

LESSR A PyTorch implementation of LESSR (Lossless Edge-order preserving aggregation and Shortcut graph attention for Session-based Recommendation) fro

Tianwen CHEN 62 Dec 03, 2022
Mutual Fund Recommender System. Tailor for fund transactions.

Explainable Mutual Fund Recommendation Data Please see 'DATA_DESCRIPTION.md' for mode detail. Recommender System Methods Baseline Collabarative Fiilte

JHJu 2 May 19, 2022
Bert4rec for news Recommendation

News-Recommendation-system-using-Bert4Rec-model Bert4rec for news Recommendation

saran pandian 2 Feb 04, 2022
Plex-recommender - Get movie recommendations based on your current PleX library

plex-recommender Description: Get movie/tv recommendations based on your current

5 Jul 19, 2022
Recommender systems are the systems that are designed to recommend things to the user based on many different factors

Recommender systems are the systems that are designed to recommend things to the user based on many different factors. The recommender system deals with a large volume of information present by filte

Happy N. Monday 3 Feb 15, 2022
大规模推荐算法库,包含推荐系统经典及最新算法LR、Wide&Deep、DSSM、TDM、MIND、Word2Vec、DeepWalk、SSR、GRU4Rec、Youtube_dnn、NCF、GNN、FM、FFM、DeepFM、DCN、DIN、DIEN、DLRM、MMOE、PLE、ESMM、MAML、xDeepFM、DeepFEFM、NFM、AFM、RALM、Deep Crossing、PNN、BST、AutoInt、FGCNN、FLEN、ListWise等

(中文文档|简体中文|English) 什么是推荐系统? 推荐系统是在互联网信息爆炸式增长的时代背景下,帮助用户高效获得感兴趣信息的关键; 推荐系统也是帮助产品最大限度吸引用户、留存用户、增加用户粘性、提高用户转化率的银弹。 有无数优秀的产品依靠用户可感知的推荐系统建立了良好的口碑,也有无数的公司依

3.6k Dec 30, 2022
The implementation of the submitted paper "Deep Multi-Behaviors Graph Network for Voucher Redemption Rate Prediction" in SIGKDD 2021 Applied Data Science Track.

DMBGN: Deep Multi-Behaviors Graph Networks for Voucher Redemption Rate Prediction The implementation of the accepted paper "Deep Multi-Behaviors Graph

10 Jul 12, 2022
EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON

exemplo-de-sistema-especialista EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON Resumo O objetivo de auxiliar o usuário na escolha

Josue Lopes 3 Aug 31, 2021
A library of metrics for evaluating recommender systems

recmetrics A python library of evalulation metrics and diagnostic tools for recommender systems. **This library is activly maintained. My goal is to c

Claire Longo 458 Jan 06, 2023
An open source movie recommendation WebApp build by movie buffs and mathematicians that uses cosine similarity on the backend.

Movie Pundit Find your next flick by asking the (almost) all-knowing Movie Pundit Jump to Project Source » View Demo · Report Bug · Request Feature Ta

Kapil Pramod Deshmukh 8 May 28, 2022
Recommendation System to recommend top books from the dataset

recommendersystem Recommendation System to recommend top books from the dataset Introduction The recom.py is the main program code. The dataset is als

Vishal karur 1 Nov 15, 2021
reXmeX is recommender system evaluation metric library.

A general purpose recommender metrics library for fair evaluation.

AstraZeneca 258 Dec 22, 2022
Code for MB-GMN, SIGIR 2021

MB-GMN Code for MB-GMN, SIGIR 2021 For Beibei data, run python .\labcode.py For Tmall data, run python .\labcode.py --data tmall --rank 2 For IJCAI

32 Dec 04, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
Price-aware Recommendation with Graph Convolutional Networks,

PUP This is the official implementation of our ICDE'20 paper: Yu Zheng, Chen Gao, Xiangnan He, Yong Li, Depeng Jin, Price-aware Recommendation with Gr

S4rawBer2y 3 Oct 30, 2022
Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems.

Persine, the Persona Engine Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems. It has a simple interface a

Jonathan Soma 87 Nov 29, 2022
Implementation of a hadoop based movie recommendation system

Implementation-of-a-hadoop-based-movie-recommendation-system 通过编写代码,设计一个基于Hadoop的电影推荐系统,通过此推荐系统的编写,掌握在Hadoop平台上的文件操作,数据处理的技能。windows 10 hadoop 2.8.3 p

汝聪(Ricardo) 5 Oct 02, 2022