Constructing Neural Network-Based Models for Simulating Dynamical Systems

Overview

Constructing Neural Network-Based Models for Simulating Dynamical Systems

Note this repo is work in progress prior to reviewing

This is a companion repo for the review paper Constructing Neural Network-Based Models for Simulating Dynamical Systems. The goal is to provide PyTorch implementations that can be used as a starting point for implementation for other applications.

If you use the work please cite it using:

{
    TODO add bibtex key
}

Installing dependencies

python3 -m pip install -r requirements.txt

Where are the models located?

The table below contains the commands necessary to train and evaluate the models described in the review paper. Each experiment can be run using default parameters by executing the script in the python interpreter as follows:

python3 experiments/
   
    .py ...

   
Name Section Command
Vanilla Direct-Solution 3.2 python3 experiments/direct_solution.py --model vanilla
Automatic Differentiation in Direct-Solution 3.3 python3 experiments/direct_solution.py --model autodiff
Physics Informed Neural Networks 3.4 python3 experiments/direct_solution.py --model pinn
Hidden Physics Networks 3.5 python3 experiments/direct_solution.py --model hnn
Direct Time-Stepper 4.2.1 python3 experiments/time_stepper.py --solver direct
Residual Time-Stepper 4.2.2 python3 experiments/time_stepper.py --solver resnet
Euler Time-Stepper 4.2.3 python3 experiments/time_stepper.py --solver euler
Neural ODEs Time-Stepper 4.2.4 python3 experiments/time_stepper.py --solver {rk4,dopri5,tsit5}
Neural State-Space Model 4.3.1 ...
Neural ODEs with input 4.3.2-3 ...
Lagrangian Time-Stepper 4.4.1 ...
Hamiltonian Time-Stepper 4.4.1 ...
Deep Potential Time-Stepper 4.4.2 ...
Deep Markov-Model 4.5.1 ...
Latent Neural ODEs 4.5.2 python3 experiments/latent_neural_odes.py
Bayesian Neural ODEs 4.5.3 ...
Neural SDEs 4.5.4 ...

Docker Image

In an effort to ensure that the code can be executed in the future, we provide a docker image. The Docker image allows the code to be run in a Linux based virtual machine on any platform supported by Docker.

To use the docker image, invoke the build command in the root of this repository:

docker build . -t python_dynamical_systems

Following this "containers" containing the code and all dependencies can be instantiated via the "run" command:

docker run -ti python_dynamical_systems bash

The command will establish an interactive connection to the container. Following this you can execute the code as if it was running on your host machine:

python3 experiments/time_stepper.py ...
Owner
Christian Møldrup Legaard
Christian Møldrup Legaard
3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.

3D AffordanceNet This repository is the official experiment implementation of 3D AffordanceNet benchmark. 3D AffordanceNet is a 3D point cloud benchma

49 Dec 01, 2022
Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Portrait Photo Retouching with PPR10K Paper | Supplementary Material PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask an

184 Dec 11, 2022
Coded illumination for improved lensless imaging

CodedCam Coded Illumination for Improved Lensless Imaging Paper | Supplementary results | Data and Code are available. Coded illumination for improved

Computational Sensing and Information Processing Lab 1 Nov 29, 2021
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

Wenhao Wang 89 Jan 02, 2023
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
Revealing and Protecting Labels in Distributed Training

Revealing and Protecting Labels in Distributed Training

Google Interns 0 Nov 09, 2022
A Python framework for developing parallelized Computational Fluid Dynamics software to solve the hyperbolic 2D Euler equations on distributed, multi-block structured grids.

pyHype: Computational Fluid Dynamics in Python pyHype is a Python framework for developing parallelized Computational Fluid Dynamics software to solve

Mohamed Khalil 21 Nov 22, 2022
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
Unsupervised Image to Image Translation with Generative Adversarial Networks

Unsupervised Image to Image Translation with Generative Adversarial Networks Paper: Unsupervised Image to Image Translation with Generative Adversaria

Hao 71 Oct 30, 2022
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
Code accompanying "Adaptive Methods for Aggregated Domain Generalization"

Adaptive Methods for Aggregated Domain Generalization (AdaClust) Official Pytorch Implementation of Adaptive Methods for Aggregated Domain Generalizat

Xavier Thomas 15 Sep 20, 2022
A general-purpose, flexible, and easy-to-use simulator alongside an OpenAI Gym trading environment for MetaTrader 5 trading platform (Approved by OpenAI Gym)

gym-mtsim: OpenAI Gym - MetaTrader 5 Simulator MtSim is a simulator for the MetaTrader 5 trading platform alongside an OpenAI Gym environment for rein

Mohammad Amin Haghpanah 184 Dec 31, 2022
Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

61 Jan 07, 2023
Instance-Dependent Partial Label Learning

Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -

17 Dec 29, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Contributors of this repo: Zhibo Zhang ( Zhibo (Darren) Zhang 18 Nov 01, 2022

Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'

Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr

Zoey Li 87 Dec 26, 2022
Deep Learning Pipelines for Apache Spark

Deep Learning Pipelines for Apache Spark The repo only contains HorovodRunner code for local CI and API docs. To use HorovodRunner for distributed tra

Databricks 2k Jan 08, 2023
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
Pytorch Implementation of Various Point Transformers

Pytorch Implementation of Various Point Transformers Recently, various methods applied transformers to point clouds: PCT: Point Cloud Transformer (Men

Neil You 434 Dec 30, 2022