Invariant Causal Prediction for Block MDPs

Overview

MISA

Abstract

Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challenges. In this paper, we consider the problem of learning abstractions that generalize in block MDPs, families of environments with a shared latent state space and dynamics structure over that latent space, but varying observations. We leverage tools from causal inference to propose a method of invariant prediction to learn model-irrelevance state abstractions (MISA) that generalize to novel observations in the multi-environment setting. We prove that for certain classes of environments, this approach outputs with high probability a state abstraction corresponding to the causal feature set with respect to the return. We further provide more general bounds on model error and generalization error in the multi-environment setting, in the process showing a connection between causal variable selection and the state abstraction framework for MDPs. We give empirical evidence that our methods work in both linear and nonlinear settings, attaining improved generalization over single-and multi-task baselines.

Citation

@inproceedings{zhang2020invariant,
    title={Invariant Causal Prediction for Block MDPs},
    author={Amy Zhang and Clare Lyle and Shagun Sodhani and Angelos Filos and Marta Kwiatkowska and Joelle Pineau and Yarin Gal and Doina Precup},
    year={2020},
    booktitle={International Conference on Machine Learning (ICML)},
}

Experiments

The three sets of experiments on model learning, imitation learning, and reinforcement learning can be found in their respective folder. To install requirements, create a new conda environment and run

pip install -e requirements.txt

In model learning, there are two sets of experiments, linear MISA and nonlinear MISA. The code is in model_learning. First cd model_learning.

The main experiment with linear MISA can be run with

ICPAbstractMDP.ipynb

The main experiment with nonlinear MISA can be run with

python main.py

For running the imitation learning experiments, first cd imitation_learning. Then install the baselines by running cd baselines && pip install tensorflow==1.14 && pip install -e . The main experiments can be run in imitation_learning directory with:

python train_expert.py --save_model --save_model_path models # Training the expert model

#Lets say the model was trained for 150K steps.

mkdir -p buffers/train/0 buffers/train/1 buffers/eval/0 # Directory to hold the buffer data

python collect_data_using_expert_policy.py --load_model_path models_150000 --save_buffer --save_buffer_path buffers  # Collecting the trajectories using the expert model

python train.py --use_single_encoder_decoder --num_train_envs 1 --num_eval_envs 1 --load_buffer_path buffers # MISA One Env

python train.py --use_single_encoder_decoder --num_train_envs 2 --num_eval_envs 1 --load_buffer_path buffers # Baseline One Decoder 

python train.py --use_discriminator --num_train_envs 2 --num_eval_envs 1 --load_buffer_path buffers # Proposed Approach

python train.py --use_irm_loss --num_train_envs 2 --num_eval_envs 1 --load_buffer_path buffers # IRM

In reinforcement learning, the main experiment can be run in reinforcement_learning directory with

./run_local.sh

LICENSE

Attribution-NonCommercial 4.0 International

Owner
Meta Research
Meta Research
Image Deblurring using Generative Adversarial Networks

DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo

Orest Kupyn 2.2k Jan 01, 2023
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon.

PokeGAN A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon. Dataset The model has been trained on dataset that includes 8

19 Jul 26, 2022
Official pytorch implementation for Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion (CVPR 2022)

Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion This repository contains a pytorch implementation of "Learning to Listen: Modeling

50 Dec 17, 2022
Linescanning - Package for (pre)processing of anatomical and (linescanning) fMRI data

line scanning repository This repository contains all of the tools used during the acquisition and postprocessing of line scanning data at the Spinoza

Jurjen Heij 4 Sep 14, 2022
Unified learning approach for egocentric hand gesture recognition and fingertip detection

Unified Gesture Recognition and Fingertip Detection A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and finge

Mohammad 227 Dec 25, 2022
An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

EVolve Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem. Overview EVolve is a linked mantle degassing and a

Pip Liggins 2 Jan 17, 2022
Code for the paper "Relation of the Relations: A New Formalization of the Relation Extraction Problem"

This repo contains the code for the EMNLP 2020 paper "Relation of the Relations: A New Paradigm of the Relation Extraction Problem" (Jin et al., 2020)

YYY 27 Oct 26, 2022
Unofficial PyTorch implementation of "RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving" (ECCV 2020)

RTM3D-PyTorch The PyTorch Implementation of the paper: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving (ECCV 2020

Nguyen Mau Dzung 271 Nov 29, 2022
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

19 Oct 27, 2022
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
A Simple Long-Tailed Rocognition Baseline via Vision-Language Model

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

Teli Ma 4 Jan 20, 2022
MaRS - a recursive filtering framework that allows for truly modular multi-sensor integration

The Modular and Robust State-Estimation Framework, or short, MaRS, is a recursive filtering framework that allows for truly modular multi-sensor integration

Control of Networked Systems - University of Klagenfurt 143 Dec 29, 2022
NR-GAN: Noise Robust Generative Adversarial Networks

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

Takuhiro Kaneko 59 Dec 11, 2022
NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework

NLP From Scratch Without Large-Scale Pretraining This repository contains the code, pre-trained model checkpoints and curated datasets for our paper:

Xingcheng Yao 224 Dec 08, 2022
SurfEmb (CVPR 2022) - SurfEmb: Dense and Continuous Correspondence Distributions

SurfEmb SurfEmb: Dense and Continuous Correspondence Distributions for Object Pose Estimation with Learnt Surface Embeddings Rasmus Laurvig Haugard, A

Rasmus Haugaard 56 Nov 19, 2022
I explore rock vs. mine prediction using a SONAR dataset

I explore rock vs. mine prediction using a SONAR dataset. Using a Logistic Regression Model for my prediction algorithm, I intend on predicting what an object is based on supervised learning.

Jeff Shen 1 Jan 11, 2022