A logical, reasonably standardized, but flexible project structure for doing and sharing data science work.

Overview

Cookiecutter Data Science

A logical, reasonably standardized, but flexible project structure for doing and sharing data science work.

Project homepage

Requirements to use the cookiecutter template:


  • Python 2.7 or 3.5+
  • Cookiecutter Python package >= 1.4.0: This can be installed with pip by or conda depending on how you manage your Python packages:
$ pip install cookiecutter

or

$ conda config --add channels conda-forge
$ conda install cookiecutter

To start a new project, run:


cookiecutter -c v1 https://github.com/drivendata/cookiecutter-data-science

asciicast

New version of Cookiecutter Data Science


Cookiecutter data science is moving to v2 soon, which will entail using the command ccds ... rather than cookiecutter .... The cookiecutter command will continue to work, and this version of the template will still be available. To use the legacy template, you will need to explicitly use -c v1 to select it. Please update any scripts/automation you have to append the -c v1 option (as above), which is available now.

The resulting directory structure


The directory structure of your new project looks like this:

├── LICENSE
├── Makefile           <- Makefile with commands like `make data` or `make train`
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── external       <- Data from third party sources.
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── docs               <- A default Sphinx project; see sphinx-doc.org for details
│
├── models             <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.
│
├── references         <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in reporting
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
│
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │   └── make_dataset.py
│   │
│   ├── features       <- Scripts to turn raw data into features for modeling
│   │   └── build_features.py
│   │
│   ├── models         <- Scripts to train models and then use trained models to make
│   │   │                 predictions
│   │   ├── predict_model.py
│   │   └── train_model.py
│   │
│   └── visualization  <- Scripts to create exploratory and results oriented visualizations
│       └── visualize.py
│
└── tox.ini            <- tox file with settings for running tox; see tox.readthedocs.io

Contributing

We welcome contributions! See the docs for guidelines.

Installing development requirements


pip install -r requirements.txt

Running the tests


py.test tests
Python Data Science Handbook: full text in Jupyter Notebooks

Python Data Science Handbook This repository contains the entire Python Data Science Handbook, in the form of (free!) Jupyter notebooks. How to Use th

Jake Vanderplas 36.9k Dec 28, 2022
🍊 :bar_chart: :bulb: Orange: Interactive data analysis

Orange Data Mining Orange is a data mining and visualization toolbox for novice and expert alike. To explore data with Orange, one requires no program

Bioinformatics Laboratory 3.9k Jan 05, 2023
Incubator for useful bioinformatics code, primarily in Python and R

Collection of useful code related to biological analysis. Much of this is discussed with examples at Blue collar bioinformatics. All code, images and

Brad Chapman 560 Dec 24, 2022
SCICO is a Python package for solving the inverse problems that arise in scientific imaging applications.

Scientific Computational Imaging COde (SCICO) SCICO is a Python package for solving the inverse problems that arise in scientific imaging applications

Los Alamos National Laboratory 37 Dec 21, 2022
artisan: visual scope for coffee roasters

Artisan Visual scope for coffee roasters WARNING: pre-release builds may not work. Use at your own risk. Summary Artisan is a software that helps coff

Artisan – Visual Scope for Coffee Roasters 705 Jan 05, 2023
Veusz scientific plotting application

Veusz 3.3.1 Veusz is a scientific plotting package. It is designed to produce publication-ready PDF or SVG output. Graphs are built-up by combining pl

Veusz 613 Dec 16, 2022
Animation engine for explanatory math videos

Manim is an engine for precise programatic animations, designed for creating explanatory math videos. Note, there are two versions of manim. This repo

Grant Sanderson 48.9k Jan 03, 2023
Program that estimates antiderivatives utilising Maclaurin series.

AntiderivativeEstimator Program that estimates antiderivatives utilising Maclaurin series. Setup: Needs Python 3 and Git installed and added to PATH.

James Watson 3 Aug 04, 2021
Probabilistic Programming in Python: Bayesian Modeling and Probabilistic Machine Learning with Aesara

PyMC3 is a Python package for Bayesian statistical modeling and Probabilistic Machine Learning focusing on advanced Markov chain Monte Carlo (MCMC) an

PyMC 7.2k Dec 30, 2022
ReproZip is a tool that simplifies the process of creating reproducible experiments from command-line executions, a frequently-used common denominator in computational science.

ReproZip ReproZip is a tool aimed at simplifying the process of creating reproducible experiments from command-line executions, a frequently-used comm

267 Jan 01, 2023
An interactive explorer for single-cell transcriptomics data

an interactive explorer for single-cell transcriptomics data cellxgene (pronounced "cell-by-gene") is an interactive data explorer for single-cell tra

Chan Zuckerberg Initiative 424 Dec 15, 2022
A logical, reasonably standardized, but flexible project structure for doing and sharing data science work.

Cookiecutter Data Science A logical, reasonably standardized, but flexible project structure for doing and sharing data science work. Project homepage

Jon C Cline 0 Sep 05, 2021
Kedro is an open-source Python framework for creating reproducible, maintainable and modular data science code

A Python framework for creating reproducible, maintainable and modular data science code.

QuantumBlack Labs 7.9k Jan 01, 2023
A modular single-molecule analysis interface

MOSAIC: A modular single-molecule analysis interface MOSAIC is a single molecule analysis toolbox that automatically decodes multi-state nanopore data

National Institute of Standards and Technology 35 Dec 13, 2022
CS 506 - Computational Tools for Data Science

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston University CS506 Fall 2021 The Final Project Repository can be found

Lance Galletti 14 Mar 23, 2022
Float2Binary - A simple python class which finds the binary representation of a floating-point number.

Float2Binary A simple python class which finds the binary representation of a floating-point number. You can find a class in IEEE754.py file with the

Bora Canbula 3 Dec 14, 2021
SeqLike - flexible biological sequence objects in Python

SeqLike - flexible biological sequence objects in Python Introduction A single object API that makes working with biological sequences in Python more

186 Dec 23, 2022
collection of interesting Computer Science resources

collection of interesting Computer Science resources

Kirill Bobyrev 137 Dec 22, 2022
A framework for feature exploration in Data Science

Beehive A framework for feature exploration in Data Science Background What do we do when we finish one episode of feature exploration in a jupyter no

Steven IJ 1 Jan 03, 2022
Algorithms covered in the Bioinformatics Course part of the Cambridge Computer Science Tripos

Bioinformatics This is a repository of all the algorithms covered in the Bioinformatics Course part of the Cambridge Computer Science Tripos Algorithm

16 Jun 30, 2022