Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Overview

Introduction

Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper

Song Park1, Sanghyuk Chun2, 3, Junbum Cha3, Bado Lee3, Hyunjung Shim1
1 School of Integrated Technology, Yonsei university
2 NAVER AI Lab
3 NAVER CLOVA

A few-shot font generation (FFG) method has to satisfy two objectives: the generated images should preserve the underlying global structure of the target character and present the diverse local reference style. Existing FFG methods aim to disentangle content and style either by extracting a universal representation style or extracting multiple component-wise style representations. However, previous methods either fail to capture diverse local styles or cannot be generalized to a character with unseen components, e.g., unseen language systems. To mitigate the issues, we propose a novel FFG method, named Multiple Localized Experts Few-shot Font Generation Network (MX-Font). MX-Font extracts multiple style features not explicitly conditioned on component labels, but automatically by multiple experts to represent different local concepts, e.g., left-side sub-glyph. Owing to the multiple experts, MX-Font can capture diverse local concepts and show the generalizability to unseen languages. During training, we utilize component labels as weak supervision to guide each expert to be specialized for different local concepts. We formulate the component assign problem to each expert as the graph matching problem, and solve it by the Hungarian algorithm. We also employ the independence loss and the content-style adversarial loss to impose the content-style disentanglement. In our experiments, MX-Font outperforms previous state-of-the-art FFG methods in the Chinese generation and cross-lingual, e.g., Chinese to Korean, generation.

You can find more related projects on the few-shot font generation at the following links:


Prerequisites

conda install numpy scipy scikit-image tqdm jsonlib-python3 fonttools

Usage

Note that, we only provide the example font files; not the font files used for the training the provided weight (generator.pth). The example font files are downloaded from here.

Preparing Data

  • The examples of datasets are in (./data)

Font files (.ttf)

  • Prepare the TrueType font files(.ttf) to use for the training and the validation.
  • Put the training font files and validation font files into separate directories.

The text files containing the available characters of .ttf files (.txt)

  • If you have the available character list of a .ttf file, save its available characters list to a text file (.txt) with the same name in the same directory with the ttf file.
    • (example) TTF file: data/ttfs/train/MaShanZheng-Regular.ttf, its available characters: data/ttfs/train/MaShanZheng-Regular.txt
  • You can also generate the available characters files automatically using the get_chars_from_ttf.py
# Generating the available characters file

python get_chars_from_ttf.py --root_dir path/to/ttf/dir
  • --root_dir: The root directory to find the .ttf files. All the .ttf files under this directory and its subdirectories will be processed.

The json files with decomposition information (.json)

  • The files for the decomposition information are needed.
    • The files for the Chinese characters are provided. (data/chn_decomposition.json, data/primals.json)
    • If you want to train the model with a language other than Chinese, the files for the decomposition rule (see below) are also needed.
      • Decomposition rule
        • structure: dict (in json format)
        • format: {char: [list of components]}
        • example: {'㐬': ['亠', '厶', '川'], '㐭': ['亠', '囗', '口']}
      • Primals
        • structure: list (in json format)
        • format: [All the components in the decomposition rule file]
        • example: ['亠', '厶', '川', '囗', '口']

Training

Modify the configuration file (cfgs/train.yaml)

- use_ddp:  whether to use DataDistributedParallel, for multi-GPUs.
- port:  the port for the DataDistributedParallel training.

- work_dir:  the directory to save checkpoints, validation images, and the log.
- decomposition:  path to the "decomposition rule" file.
- primals:  path to the "primals" file.

- dset:  (leave blank)
  - train:  (leave blank)
    - data_dir : path to .ttf files for the training
  - val: (leave blank)
    - data_dir : path to .ttf files for the validation
    - source_font : path to .ttf file used as the source font during the validation

Run training

python train.py cfgs/train.yaml
  • arguments
    • path/to/config (first argument): path to configration file.
    • --resume (optional) : path to checkpoint to resume.

Test

Preparing the reference images

  • Prepare the reference images and the .ttf file to use as the source font.
  • The reference images are should be placed in this format:
    * data_dir
    |-- font1
        |-- char1.png
        |-- char2.png
        |-- char3.png
    |-- font2
        |-- char1.png
        |-- char2.png
            .
            .
            .
  • The names of the directory or the image files are not important, however, the images with the same reference style are should be grouped with the same directory.
  • If you want to generate only specific characters, prepare the file containing the list of the characters to generate.
    • The example file is provided. (data/chn_gen.json)

Modify the configuration file (cfgs/eval.yaml)

- dset:  (leave blank)
  - test:  (leave blank)
    - data_dir: path to reference images
    - source_font: path to .ttf file used as the source font during the generation
    - gen_chars_file: path to file of the characters to generate. Leave blank if you want to generate all the available characters in the source font.

Run test

python eval.py \
    cfgs/eval.yaml \
    --weight generator.pth \
    --result_dir path/to/save/images
  • arguments
    • path/to/config (first argument): path to configration file.
    • --weight : path to saved weight to test.
    • --result_dir: path to save generated images.

Code license

This project is distributed under MIT license, except modules.py which is adopted from https://github.com/NVlabs/FUNIT.

MX-Font
Copyright (c) 2021-present NAVER Corp.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Acknowledgement

This project is based on clovaai/dmfont and clovaai/lffont.

How to cite

@article{park2021mxfont,
    title={Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts},
    author={Park, Song and Chun, Sanghyuk and Cha, Junbum and Lee, Bado and Shim, Hyunjung},
    year={2021},
    journal={arXiv preprint arXiv:2104.00887},
}
Owner
Clova AI Research
Open source repository of Clova AI Research, NAVER & LINE
Clova AI Research
Deep Learning ❤️ OneFlow

Deep Learning with OneFlow made easy 🚀 ! Carefree? carefree-learn aims to provide CAREFREE usages for both users and developers. User Side Computer V

21 Oct 27, 2022
Neural style transfer in PyTorch.

style-transfer-pytorch An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs.

Katherine Crowson 395 Jan 06, 2023
Code for "Learning to Regrasp by Learning to Place"

Learning2Regrasp Learning to Regrasp by Learning to Place, CoRL 2021. Introduction We propose a point-cloud-based system for robots to predict a seque

Shuo Cheng (成硕) 18 Aug 27, 2022
Luminaire is a python package that provides ML driven solutions for monitoring time series data.

A hands-off Anomaly Detection Library Table of contents What is Luminaire Quick Start Time Series Outlier Detection Workflow Anomaly Detection for Hig

Zillow 670 Jan 02, 2023
Rainbow is all you need! A step-by-step tutorial from DQN to Rainbow

Do you want a RL agent nicely moving on Atari? Rainbow is all you need! This is a step-by-step tutorial from DQN to Rainbow. Every chapter contains bo

Jinwoo Park (Curt) 1.4k Dec 29, 2022
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Distant Supervision for Scene Graph Generation Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation. Introduction The pape

THUNLP 23 Dec 31, 2022
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022
A complete speech segmentation system using Kaldi and x-vectors for voice activity detection (VAD) and speaker diarisation.

bbc-speech-segmenter: Voice Activity Detection & Speaker Diarization A complete speech segmentation system using Kaldi and x-vectors for voice activit

BBC 16 Oct 27, 2022
Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara 898 Jan 07, 2023
Official implementation of "Learning Not to Reconstruct" (BMVC 2021)

Official PyTorch implementation of "Learning Not to Reconstruct Anomalies" This is the implementation of the paper "Learning Not to Reconstruct Anomal

Marcella Astrid 13 Dec 04, 2022
Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023
VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition Usage First, install PyTorch 1.7.1+, torchvision 0.8.2

40 Dec 12, 2022
An AI made using artificial intelligence (AI) and machine learning algorithms (ML) .

DTech.AIML An AI made using artificial intelligence (AI) and machine learning algorithms (ML) . This is created by help of some members in my team and

1 Jan 06, 2022
Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Finite basis physics-informed neural networks (FBPINNs) This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Netwo

Ben Moseley 65 Dec 28, 2022
Learning Compatible Embeddings, ICCV 2021

LCE Learning Compatible Embeddings, ICCV 2021 by Qiang Meng, Chixiang Zhang, Xiaoqiang Xu and Feng Zhou Paper: Arxiv We cannot release source codes pu

Qiang Meng 25 Dec 17, 2022
Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021
A time series processing library

Timeseria Timeseria is a time series processing library which aims at making it easy to handle time series data and to build statistical and machine l

Stefano Alberto Russo 11 Aug 08, 2022
Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion

Feature-Style Encoder for Style-Based GAN Inversion Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion. Code will

InterDigital 63 Jan 03, 2023
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022