Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps

Overview

Range Image-based 3D LiDAR Localization

This repo contains the code for our ICRA2021 paper: Range Image-based LiDAR Localization for Autonomous Vehicles.

Developed by Xieyuanli Chen, Ignacio Vizzo, Thomas Läbe and Jens Behley.

It uses a novel sensor model with MCL to achieve 3D LiDAR global localization and pose tracking. The sensor model compares the range image of the current LiDAR scan to the synthetic range images rendered from the triangular mesh to update the weight of particles. This method is simple but can be used with different types of LiDAR scanners in different datasets and environments without fine-tuning.

Online localization demo.

Visualizations: Left: the triangular mesh and the localization results; Right: Sub-tile maps

Table of Contents

  1. Introduction
  2. Publication
  3. Dependencies
  4. How to use
  5. Related work
  6. License

Publication

If you use our implementation in your academic work, please cite the corresponding paper:

@inproceedings{chen2021icra,
	author = {X. Chen and I. Vizzo and T. L{\"a}be and J. Behley and C. Stachniss},
	title = {{Range Image-based LiDAR Localization for Autonomous Vehicles}},
	booktitle = icra,
	year = 2021,
	url = {http://www.ipb.uni-bonn.de/pdfs/chen2021icra.pdf},
	codeurl = {https://github.com/PRBonn/range-mcl}
}

Dependencies

The code was tested with Ubuntu 20.04 with its standard python version 3.8.

We are using OpenGL to do achieve fast rendering, so you will need an OpenGL capable graphics card (we use Nvidia cards, e.g. 2080Ti) to be fast.

  • System dependencies related to OpenGL:

    sudo apt-get update 
    sudo apt-get install libgl1-mesa-glx
  • Other system dependencies:

    sudo apt-get update 
    sudo apt-get install libusb-1.0   # open3d 0.12.0 dependency
    sudo apt-get install -y python3-pip
    sudo -H pip3 install --upgrade pip
  • Python dependencies (may also work with different versions than mentioned in the requirements file)

    sudo -H pip3 install -r requirements.txt

How to use

Quick use

For a quick demo, one could download the mesh map and LiDAR data, extract the them in the /data folder following the recommended data structure, and then run:

cd src/
python3 main_range_mcl.py

One could then get the online visualization of range-based MCL as shown in the gif.

More detailed usage

Here, we provide more detailed information about our range-image-based LiDAR localization method, including building mesh maps, evaluating the localization results and more pre-built maps of different datasets.

Build mesh map

To build a mesh map, we use the Poisson surface reconstruction provided by the Open3D library. One need to download the LiDAR data, extract the them in the /data folder following the recommended data structure, and then run:

python3 build_mesh_map.py

Notice that, we used our moving object segmentation method (coming soon) cleaned the scans before building the map. One could also use other methods to clean the map.

For fast calculating and generating range and normal data for LiDAR scans, one could find more details here.

Evaluation

Once finished the localization process, one would get the localization results at /results. To evaluate the localization results, one could check the evaluation.py. For a quick demo, one just need to run

python3 evaluation.py

Collection of mesh maps

Notice that, the mesh maps were generated using the data from KITTI dataset, MulRan dataset and Apollo dataset. Please register on their official website to apply for the original data.

Related work

Puma: Poisson Surface Reconstruction for LiDAR Odometry and Mapping

We also released the implementation of the algorithms described in our paper Poisson Surface Reconstruction for LiDAR Odometry and Mapping. This is a LiDAR Odometry and Mapping pipeline that uses the Poisson Surface Reconstruction algorithm to build the map as a triangular mesh online.

Overlap-localization: Overlap-based 3D LiDAR Monte Carlo Localization

We previously also proposed a learning-based global localization method, called overlap localization. It uses the OverlapNet to train an observation model for Monte Carlo Localization and achieves global localization with 3D LiDAR scans.

License

Copyright 2021, Xieyuanli Chen, Ignacio Vizzo, Thomas Läbe, Jens Behley, Cyrill Stachniss, Photogrammetry and Robotics Lab, University of Bonn.

This project is free software made available under the MIT License. For details see the LICENSE file.

Comments
  • some problem

    some problem

    image

    [email protected]:~/range-mcl/src$ python3 main_range_mcl.py INFO - 2021-06-24 00:21:08,437 - acceleratesupport - OpenGL_accelerate module loaded INFO - 2021-06-24 00:21:08,451 - arraydatatype - Using accelerated ArrayDatatype Load mesh map and initialize map module... lower bound: [-137.51303435084705, -53.88607274849302] upper bound: [170.8931181474161, 237.73366404891496] number of tiles = 8 total number of triangles: 4282269 WARNING - 2021-06-24 00:21:21,473 - numpymodule - Unable to load numpy_formathandler accelerator from OpenGL_accelerate Monte Carlo localization initializing... 段错误 (核心已转储)

    opened by conancheng 2
  • Regd. CARLA data

    Regd. CARLA data

    Hi,

    Thank you for your work and the open source release. I was wondering if you have released the CARLA sequence (mesh map, odometry etc.) from your experiments somewhere?

    opened by karnikram 0
  • Error with the DISPLAY environment variable

    Error with the DISPLAY environment variable

    Hi there, thanks for providing the code to test. However, I got an issue running the code.

    ==================================================================

    Message=index 0 is out of bounds for axis 0 with size 0 Source=F:\Capstone\algorithms\range_mcl\src\utils.py StackTrace: File "F:\Capstone\algorithms\range_mcl\src\utils.py", line 340, in load_poses_kitti inv_frame0 = np.linalg.inv(poses[0]) File "F:\Capstone\algorithms\range_mcl\src\main_range_mcl.py", line 49, in (Current frame) map_poses = load_poses_kitti(map_pose_file, map_calib_file)

    ======================================================================

    I tried to search for the GLFWError 65544 but none of the solutions seems to work. Is there anything idea what is happening?

    Regards Jimmy

    opened by GinWeng 1
  • 20.04 python3.8 can't be running...

    20.04 python3.8 can't be running...

    [email protected]:~/range-mcl-main/src$ python3 main_range_mcl.py INFO - 2021-08-06 11:42:08,929 - acceleratesupport - OpenGL_accelerate module loaded INFO - 2021-08-06 11:42:08,931 - arraydatatype - Using accelerated ArrayDatatype Load mesh map and initialize map module... lower bound: [-137.51303435084705, -53.88607274849302] upper bound: [170.8931181474161, 237.73366404891496] number of tiles = 8 total number of triangles: 4282269 WARNING - 2021-08-06 11:42:12,640 - numpymodule - Unable to load numpy_formathandler accelerator from OpenGL_accelerate Monte Carlo localization initializing... 段错误 (核心已转储) 2021-08-06 14-09-58屏幕截图

    2021-08-06 14-09-33屏幕截图

    opened by conancheng 4
  • How the algorithm runs in real time and its compatibility with solid-state lidar positioning?

    How the algorithm runs in real time and its compatibility with solid-state lidar positioning?

    The work is excellent and I'm honor to study for it.But I have two questions about it: 1、how the algorithm runs in real time not need "velodyne_bin" 2、its compatibility with solid-state lidar ,such as livox I'm looking forward to your answers,thank you Yours sincerely

    opened by PigletPh 8
  • python main_range_mcl.py problem

    python main_range_mcl.py problem

    OS: ubuntu2004 python: Python 3.8.5 gpu: GeForce GTX 1060 drive NVIDIA-SMI 460.56 Driver Version: 460.56 CUDA Version: 11.2

    $ python main_range_mcl.py ... finished frame 1099 with time of: 7.22408e-05 s finished frame 1100 with time of: 5.55515e-05 s Average runtime after convergence: 0.16806003594713895 save the localization results at: ../results/demo_loc_results.npz Exception ignored in: <function GlBuffer.del at 0x7efcd4e45790> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 75, in del AttributeError: 'NoneType' object has no attribute 'glDeleteBuffers' Exception ignored in: <function GlBuffer.del at 0x7efcd4e45790> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 75, in del AttributeError: 'NoneType' object has no attribute 'glDeleteBuffers' Exception ignored in: <function GlProgram.del at 0x7efcd4e4e160> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 482, in del AttributeError: 'NoneType' object has no attribute 'glDeleteProgram' Exception ignored in: <function GlTextureBuffer.del at 0x7efcd4e45ca0> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 128, in del AttributeError: 'NoneType' object has no attribute 'glDeleteBuffers' Exception ignored in: <function GlBuffer.del at 0x7efcd4e45790> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 75, in del AttributeError: 'NoneType' object has no attribute 'glDeleteBuffers' Exception ignored in: <function GlProgram.del at 0x7efcd4e4e160> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 482, in del AttributeError: 'NoneType' object has no attribute 'glDeleteProgram' Exception ignored in: <function GlProgram.del at 0x7efcd4e4e160> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 482, in del AttributeError: 'NoneType' object has no attribute 'glDeleteProgram' Exception ignored in: <function GlTexture2D.del at 0x7efcd4e4c280> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 229, in del AttributeError: 'NoneType' object has no attribute 'glDeleteTextures' Exception ignored in: <function GlTexture2D.del at 0x7efcd4e4c280> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 229, in del AttributeError: 'NoneType' object has no attribute 'glDeleteTextures' Exception ignored in: <function GlTexture2D.del at 0x7efcd4e4c280> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 229, in del AttributeError: 'NoneType' object has no attribute 'glDeleteTextures' Exception ignored in: <function GlFramebuffer.del at 0x7efcd4e4e9d0> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 624, in del AttributeError: 'NoneType' object has no attribute 'glDeleteFramebuffers' Exception ignored in: <function GlTexture2D.del at 0x7efcd4e4c280> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 229, in del AttributeError: 'NoneType' object has no attribute 'glDeleteTextures' Exception ignored in: <function GlTexture2D.del at 0x7efcd4e4c280> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 229, in del AttributeError: 'NoneType' object has no attribute 'glDeleteTextures' Exception ignored in: <function GlTexture2D.del at 0x7efcd4e4c280> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 229, in del AttributeError: 'NoneType' object has no attribute 'glDeleteTextures' Exception ignored in: <function GlRenderbuffer.del at 0x7efcd4e4e5e0> Traceback (most recent call last): File "/home/xxx/range-mcl/src/map_renderer/glow.py", line 591, in del AttributeError: 'NoneType' object has no attribute 'glDeleteRenderbuffers'

    opened by improve100 3
Releases(v1.0)
Owner
Photogrammetry & Robotics Bonn
Photogrammetry & Robotics Lab at the University of Bonn
Photogrammetry & Robotics Bonn
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernández Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

72 Nov 27, 2022
A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

KevinCHEN 1 Jun 13, 2022
Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut

You Only Cut Once (YOCO) YOCO is a simple method/strategy of performing augmenta

88 Dec 28, 2022
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
Text mining project; Using distilBERT to predict authors in the classification task authorship attribution.

DistilBERT-Text-mining-authorship-attribution Dataset used: https://www.kaggle.com/azimulh/tweets-data-for-authorship-attribution-modelling/version/2

1 Jan 13, 2022
Visualizer using audio and semantic analysis to explore BigGAN (Brock et al., 2018) latent space.

BigGAN Audio Visualizer Description This visualizer explores BigGAN (Brock et al., 2018) latent space by using pitch/tempo of an audio file to generat

Rush Kapoor 2 Nov 21, 2022
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022
Find-Lane-Line - Use openCV library and Python to detect the road-lane-line

Find-Lane-Line This project is to use openCV library and Python to detect the road-lane-line. Data Pipeline Step one : Color Selection Step two : Cann

Kenny Cheng 3 Aug 17, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Zihao Fu 37 Nov 21, 2022
PyTorch version implementation of DORN

DORN_PyTorch This is a PyTorch version implementation of DORN Reference H. Fu, M. Gong, C. Wang, K. Batmanghelich and D. Tao: Deep Ordinal Regression

Zilin.Zhang 3 Apr 27, 2022
PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

1.4k Jan 06, 2023
Differentiable Quantum Chemistry (only Differentiable Density Functional Theory and Hartree Fock at the moment)

DQC: Differentiable Quantum Chemistry Differentiable quantum chemistry package. Currently only support differentiable density functional theory (DFT)

75 Dec 02, 2022
Python code for loading the Aschaffenburg Pose Dataset.

Aschaffenburg Pose Dataset (APD) This repository contains Python code for loading and filtering the Aschaffenburg Pose Dataset. The dataset itself and

1 Nov 26, 2021
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2021/11/19 Thank you for your interest in our work. We have uploaded the code of our MTUNet to help peers conduct further research on i

dotman 92 Dec 25, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022