Code for CVPR 2022 paper "Bailando: 3D dance generation via Actor-Critic GPT with Choreographic Memory"

Overview

Bailando

Code for CVPR 2022 (oral) paper "Bailando: 3D dance generation via Actor-Critic GPT with Choreographic Memory"

[Paper] | [Project Page] | [Video Demo]

Do not hesitate to give a star!

Driving 3D characters to dance following a piece of music is highly challenging due to the spatial constraints applied to poses by choreography norms. In addition, the generated dance sequence also needs to maintain temporal coherency with different music genres. To tackle these challenges, we propose a novel music-to-dance framework, Bailando, with two powerful components: 1) a choreographic memory that learns to summarize meaningful dancing units from 3D pose sequence to a quantized codebook, 2) an actor-critic Generative Pre-trained Transformer (GPT) that composes these units to a fluent dance coherent to the music. With the learned choreographic memory, dance generation is realized on the quantized units that meet high choreography standards, such that the generated dancing sequences are confined within the spatial constraints. To achieve synchronized alignment between diverse motion tempos and music beats, we introduce an actor-critic-based reinforcement learning scheme to the GPT with a newly-designed beat-align reward function. Extensive experiments on the standard benchmark demonstrate that our proposed framework achieves state-of-the-art performance both qualitatively and quantitatively. Notably, the learned choreographic memory is shown to discover human-interpretable dancing-style poses in an unsupervised manner.

Code

Environment

PyTorch == 1.6.0

Data preparation

In our experiments, we use AIST++ for both training and evaluation. Please visit here to download the AIST++ annotations and unzip them as './aist_plusplus_final/' folder, visit here to download all original music pieces (wav) into './aist_plusplus_final/all_musics'. And please set up the AIST++ API from here and download the required SMPL models from here. Please make a folder './smpl' and copy the downloaded 'male' SMPL model (with '_m' in name) to 'smpl/SMPL_MALE.pkl' and finally run

./prepare_aistpp_data.sh

to produce the features for training and test. Otherwise, directly download our preprocessed feature from here as ./data folder if you don't wish to process the data.

Training

The training of Bailando comprises of 4 steps in the following sequence. If you are using the slurm workload manager, you can directly run the corresponding shell. Otherwise, please remove the 'srun' parts. Our models are all trained with single NVIDIA V100 GPU. * A kind reminder: the quantization code does not fit multi-gpu training

Step 1: Train pose VQ-VAE (without global velocity)

sh srun.sh configs/sep_vqvae.yaml train [your node name] 1

Step 2: Train glabal velocity branch of pose VQ-VAE

sh srun.sh configs/sep_vavqe_root.yaml train [your node name] 1

Step 3: Train motion GPT

sh srun_gpt_all.sh configs/cc_motion_gpt.yaml train [your node name] 1

Step 4: Actor-Critic finetuning on target music

sh srun_actor_critic.sh configs/actor_critic.yaml train [your node name] 1

Evaluation

To test with our pretrained models, please download the weights from here (Google Drive) or separately downloads the four weights from [weight 1]|[weight 2]|[weight 3]|[weight4] (坚果云) into ./experiments folder.

1. Generate dancing results

To test the VQ-VAE (with or without global shift as you indicated in config):

sh srun.sh configs/sep_vqvae.yaml eval [your node name] 1

To test GPT:

sh srun_gpt_all.sh configs/cc_motion_gpt.yaml eval [your node name] 1

To test final restuls:

sh srun_actor_critic.sh configs/actor_critic.yaml eval [your node name] 1

2. Dance quality evaluations

After generating the dance in the above step, run the following codes.

Step 1: Extract the (kinetic & manual) features of all AIST++ motions (ONLY do it by once):

python extract_aist_features.py

Step 2: compute the evaluation metrics:

python utils/metrics_new.py

It will show exactly the same values reported in the paper. To fasten the computation, comment Line 184 of utils/metrics_new.py after computed the ground-truth feature once. To test another folder, change Line 182 to your destination, or kindly modify this code to a "non hard version" :)

Choreographic for music in the wild

TODO

Citation

@inproceedings{siyao2022bailando,
    title={Bailando: 3D dance generation via Actor-Critic GPT with Choreographic Memory,
    author={Siyao, Li and Yu, Weijiang and Gu, Tianpei and Lin, Chunze and Wang, Quan and Qian, Chen and Loy, Chen Change and Liu, Ziwei },
    booktitle={CVPR},
    year={2022}
}

License

Our code is released under MIT License.

Owner
Li Siyao
an interesting PhD student
Li Siyao
Implementation of our paper 'PixelLink: Detecting Scene Text via Instance Segmentation' in AAAI2018

Code for the AAAI18 paper PixelLink: Detecting Scene Text via Instance Segmentation, by Dan Deng, Haifeng Liu, Xuelong Li, and Deng Cai. Contributions

758 Dec 22, 2022
Deep LearningImage Captcha 2

滑动验证码深度学习识别 本项目使用深度学习 YOLOV3 模型来识别滑动验证码缺口,基于 https://github.com/eriklindernoren/PyTorch-YOLOv3 修改。 只需要几百张缺口标注图片即可训练出精度高的识别模型,识别效果样例: 克隆项目 运行命令: git cl

Python3WebSpider 117 Dec 28, 2022
TextField: Learning A Deep Direction Field for Irregular Scene Text Detection (TIP 2019)

TextField: Learning A Deep Direction Field for Irregular Scene Text Detection Introduction The code and trained models of: TextField: Learning A Deep

Yukang Wang 101 Dec 12, 2022
CNN+LSTM+CTC based OCR implemented using tensorflow.

CNN_LSTM_CTC_Tensorflow CNN+LSTM+CTC based OCR(Optical Character Recognition) implemented using tensorflow. Note: there is No restriction on the numbe

Watson Yang 356 Dec 08, 2022
Play the Namibian game of Owela against a terrible AI. Built using Django and htmx.

Owela Club A Django project for playing the Namibian game of Owela against a dumb AI. Built following the rules described on the Mancala World wiki pa

Adam Johnson 18 Jun 01, 2022
This is a project to detect gestures to zoom in or out, using the real-time distance between the index finger and the thumb. It's based on OpenCV and Mediapipe.

Pinch-zoom This is a python project based on real-time hand-gesture detection, to zoom in or out, using the distance between the index finger and the

Harshit Bhalla 6 Jul 11, 2022
1st place solution for SIIM-FISABIO-RSNA COVID-19 Detection Challenge

SIIM-COVID19-Detection Source code of the 1st place solution for SIIM-FISABIO-RSNA COVID-19 Detection Challenge. 1.INSTALLATION Ubuntu 18.04.5 LTS CUD

Nguyen Ba Dung 170 Dec 21, 2022
Detect text blocks and OCR poorly scanned PDFs in bulk. Python module available via pip.

doc2text doc2text extracts higher quality text by fixing common scan errors Developing text corpora can be a massive pain in the butt. Much of the tex

Joe Sutherland 1.3k Jan 04, 2023
Simple SDF mesh generation in Python

Generate 3D meshes based on SDFs (signed distance functions) with a dirt simple Python API.

Michael Fogleman 1.1k Jan 08, 2023
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
Using python libraries to track hands

Python-HandTracking Using python libraries to track hands on a camera Uses cv2 and mediapipe libraries custom hand tracking module PyCharm IDE Final E

Martin Matsudaira 1 Dec 17, 2021
Code for the "Sensing leg movement enhances wearable monitoring of energy expenditure" paper.

EnergyExpenditure Code for the "Sensing leg movement enhances wearable monitoring of energy expenditure" paper. Additional data for replicating this s

Patrick S 42 Oct 26, 2022
A program that takes in the hand gesture displayed by the user and translates ASL.

Interactive-ASL-Recognition Using the framework mediapipe made by google, OpenCV library and through self teaching, I was able to create a program tha

Riddhi Bajaj 3 Nov 22, 2021
WACV 2022 Paper - Is An Image Worth Five Sentences? A New Look into Semantics for Image-Text Matching

Is An Image Worth Five Sentences? A New Look into Semantics for Image-Text Matching Code based on our WACV 2022 Accepted Paper: https://arxiv.org/pdf/

Andres 13 Dec 17, 2022
This is a implementation of CRAFT OCR method

This is a implementation of CRAFT OCR method

Esaka 0 Nov 01, 2021
An unofficial implementation of the paper "AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss".

AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss This is an unofficial implementation of AutoVC based on the official one. The reposi

Chien-yu Huang 27 Jun 16, 2022
This pyhton script converts a pdf to Image then using tesseract as OCR engine converts Image to Text

Script_Convertir_PDF_IMG_TXT Este script de pyhton convierte un pdf en Imagen luego utilizando tesseract como motor OCR convierte la Imagen a Texto. p

alebogado 1 Jan 27, 2022
Um RPG de texto orientado a objetos.

RPG de texto Um RPG de texto orientado a objetos, sem história. Um RPG (Role-playing game) baseado em texto em que você pode viajar para alguns locais

Vinicius 3 Oct 05, 2022
PyTorch Re-Implementation of EAST: An Efficient and Accurate Scene Text Detector

Description This is a PyTorch Re-Implementation of EAST: An Efficient and Accurate Scene Text Detector. Only RBOX part is implemented. Using dice loss

365 Dec 20, 2022
question‘s area recognition using image processing and regular expression

======================================== Paper-Question-recognition ======================================== question‘s area recognition using image p

Yuta Mizuki 7 Dec 27, 2021