A webcam-based 3x3x3 rubik's cube solver written in Python 3 and OpenCV.

Overview

Qbr

Qbr, pronounced as Cuber, is a webcam-based 3x3x3 rubik's cube solver written in Python 3 and OpenCV.

  • 🌈 Accurate color detection
  • 🔍 Accurate 3x3x3 rubik's cube detection
  • 🔠 Multilingual

Solve mode

solve mode

Calibrate mode

Isn't the default color detection working out for you? Use the calibrate mode to let Qbr be familiar with your cube's color scheme. If your room has proper lighting then this will give you a 99.9% guarantee that your colors will be detected properly.

Simply follow the on-screen instructions and you're ready to go.

calibrate mode calibrate mode success

Table of Contents

Introduction

The idea to create this came personally to mind when I started solving rubik's cubes. There were already so many professional programmers around the world who created robots that solve a rubik's cube in an ETA of 5 seconds and since 2016 in 1 second (link). That inspired me to create my own. I started using images only and eventually switched to webcam.

Installation

$ git clone --depth 1 https://github.com/kkoomen/qbr.git
$ cd qbr
$ python3 -m venv env
$ source ./env/bin/activate
$ pip3 install -r requirements.txt

Usage

Make sure you run source ./env/bin/activate every time you want to run the program.

Run Qbr:

$ ./src/qbr.py

This opens a webcam interface with the following things:

The first 9-sticker display (upper left corner)

This is preview mode. This will update immediately and display how Qbr has detected the colors.

The second 9-sticker display (upper left corner)

This is the snapshot state. When pressing SPACE it will create a snapshot in order to show you what state it has saved. You can press SPACE as many times as you'd like if it has been detected wrong.

Amount of sides scanned (bottom left corner)

The bottom left corner shows the amount of sides scanned. This is so you know if you've scanned in all sides before pressing ESC.

Interface language (top right corner)

In the top right corner you can see the current interface language. If you want to change the interface language you can press l to cycle through them. Continue to press l until you've found the right language.

Default language is set to English.

Available languages are:

  • English
  • Hungarian
  • Deutsch
  • French
  • Dutch
  • 简体中文

Full 2D cube state visualization (bottom right corner)

This visualization represents the whole cube state that is being saved and can be used to confirm whether the whole cube state has been scanned successfully.

Calibrate mode

The default color scheme contains the most prominent colors for white, yellow, red, orange, blue and green. If this can't detect your cube its colors properly then you can use calibrate mode.

Press c to go into calibrate mode in order to let Qbr be familiar with your cube's color scheme. Simply follow the on-screen instructions and you're ready to go.

Note: Your calibrated settings are automatically saved after you've calibrated your cube successfully. The next time you start Qbr it will automatically load it.

Tip: If you've scanned wrong, simple go out of calibrate mode by pressing c and go back into calibrate by pressing c again.

Getting the solution

Qbr checks if you have filled in all 6 sides when pressing ESC. If so, it'll calculate a solution if you've scanned it correctly.

You should now see a solution (or an error if you did it wrong).

How to scan your cube properly?

There is a strict way of scanning in the cube. Qbr will detect the side automatically, but the way you rotate the cube during the time you're scanning it is crucial in order for Qbr to properly calculate a solution. Make sure to follow the steps below properly:

  • Start off with the green side facing the camera and white on top, green being away from you. Start by scanning in the green side at this point.
  • After you've scanned in the green side, rotate the cube 90 or -90 degrees horizontally. It doesn't matter if you go clockwise or counter-clockwise. Continue to do this for the green, blue, red and orange sides until you are back at the green side.
  • You should now be in the same position like you started, having green facing the camera and white on top. Rotate the cube forward 90 degrees, resulting in green at the bottom and white facing the camera. Start scanning in the white side.
  • After you've scanned the white side, turn the cube back to how you started, having green in front again and white on top. Now rotate the cube backwards 90 degrees, resulting in green on top and yellow facing the camera. Now you can scan in the last yellow side.

If you've done the steps above correctly, you should have a solution from Qbr.

Keybindings

  • SPACE for saving the current state

  • ESC quit

  • c toggle calibrate mode

  • l switch interface language

Paramaters

You can use -n or --normalize to also output the solution in a "human-readable" format.

For example:

  • R will be: Turn the right side a quarter turn away from you.
  • F2 will be: Turn the front face 180 degrees.

Example runs

$ ./qbr.py
Starting position:
front: green
top: white

Moves: 20
Solution: U2 R D2 L2 F2 L U2 L F' U L U R2 B2 U' F2 D2 R2 D2 R2
$ ./qbr.py -n
Starting position:
front: green
top: white

Moves: 20
Solution: B2 U2 F' R U D' L' B' U L F U F2 R2 F2 D' F2 D R2 D2
1. Turn the back side 180 degrees.
2. Turn the top layer 180 degrees.
3. Turn the front side a quarter turn to the left.
4. Turn the right side a quarter turn away from you.
5. Turn the top layer a quarter turn to the left.
6. Turn the bottom layer a quarter turn to the left.
7. Turn the left side a quarter turn away from you.
8. Turn the back side a quarter turn to the right.
9. Turn the top layer a quarter turn to the left.
10. Turn the left side a quarter turn towards you.
11. Turn the front side a quarter turn to the right.
12. Turn the top layer a quarter turn to the left.
13. Turn the front side 180 degrees.
14. Turn the right side 180 degrees.
15. Turn the front side 180 degrees.
16. Turn the bottom layer a quarter turn to the left.
17. Turn the front side 180 degrees.
18. Turn the bottom layer a quarter turn to the right.
19. Turn the right side 180 degrees.
20. Turn the bottom layer 180 degrees.

Inspirational sources

Special thanks to HaginCodes for the main inspiration on how to improve my color detection.

https://github.com/HaginCodes/3x3x3-Rubiks-Cube-Solver

http://programmablebrick.blogspot.com/2017/02/rubiks-cube-tracker-using-opencv.html

https://gist.github.com/flyboy74/2cc3097f784c8c236a1a85278f08cddd

https://github.com/dwalton76/rubiks-color-resolver

License

Qbr is licensed under the MIT License.

Owner
Kim 金可明
Vim enthusiast; polyglot programmer; fullstack software engineer; QA engineer
Kim 金可明
Document blur detection based on Laplacian operator and text detection.

Document Blur Detection For general blurred image, using the variance of Laplacian operator is a good solution. But as for the blur detection of docum

JoeyLr 5 Oct 20, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
Document Image Dewarping

Document image dewarping using text-lines and line Segments Abstract Conventional text-line based document dewarping methods have problems when handli

Taeho Kil 268 Dec 23, 2022
Train custom VR face tracking parameters

Pal Buddy Guy: The anipal's best friend This is a small script to improve upon the tracking capabilities of the Vive Pro Eye and facial tracker. You c

7 Dec 12, 2021
TedEval: A Fair Evaluation Metric for Scene Text Detectors

TedEval: A Fair Evaluation Metric for Scene Text Detectors Official Python 3 implementation of TedEval | paper | slides Chae Young Lee, Youngmin Baek,

Clova AI Research 167 Nov 20, 2022
Implementation of EAST scene text detector in Keras

EAST: An Efficient and Accurate Scene Text Detector This is a Keras implementation of EAST based on a Tensorflow implementation made by argman. The or

Jan Zdenek 208 Nov 15, 2022
Camera Intrinsic Calibration and Hand-Eye Calibration in Pybullet

This repository is mainly for camera intrinsic calibration and hand-eye calibration. Synthetic experiments are conducted in PyBullet simulator. 1. Tes

CAI Junhao 7 Oct 03, 2022
Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

SMCG Code for the paper "Controllable Video Captioning with an Exemplar Sentence" Introduction We investigate a novel and challenging task, namely con

10 Dec 04, 2022
Autonomous Driving project for Euro Truck Simulator 2

hope-autonomous-driving Autonomous Driving project for Euro Truck Simulator 2 Video: How is it working ? In this video, the program processes the imag

Umut Görkem Kocabaş 36 Nov 06, 2022
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval (arXiv) Repository to contain the code, models, data for end-to-end

225 Dec 25, 2022
Lightning Fast Language Prediction 🚀

whatthelang Lightning Fast Language Prediction 🚀 Dependencies The dependencies can be installed using the requirements.txt file: $ pip install -r req

Indix 152 Oct 16, 2022
Convolutional Recurrent Neural Networks(CRNN) for Scene Text Recognition

CRNN_Tensorflow This is a TensorFlow implementation of a Deep Neural Network for scene text recognition. It is mainly based on the paper "An End-to-En

MaybeShewill-CV 1000 Dec 27, 2022
Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Handwritten Text Recognition with TensorFlow Update 2021: more robust model, faster dataloader, word beam search decoder also available for Windows Up

Harald Scheidl 1.5k Jan 07, 2023
text detection mainly based on ctpn model in tensorflow, id card detect, connectionist text proposal network

text-detection-ctpn Scene text detection based on ctpn (connectionist text proposal network). It is implemented in tensorflow. The origin paper can be

Shaohui Ruan 3.3k Dec 30, 2022
Fatigue Driving Detection Based on Dlib

Fatigue Driving Detection Based on Dlib

5 Dec 14, 2022
SRA's seminar on Introduction to Computer Vision Fundamentals

Introduction to Computer Vision This repository includes basics to : Python Numpy: A python library Git Computer Vision. The aim of this repository is

Society of Robotics and Automation 147 Dec 04, 2022
Using computer vision method to recognize and calcutate the features of the architecture.

building-feature-recognition In this repository, we accomplished building feature recognition using traditional/dl-assisted computer vision method. Th

4 Aug 11, 2022
A simple demo program for using OpenCV on Android

Kivy OpenCV Demo A simple demo program for using OpenCV on Android Build with: buildozer android debug deploy run Run (on desktop) with: python main.p

Andrea Ranieri 13 Dec 29, 2022
Balabobapy - Using artificial intelligence algorithms to continue the text

Balabobapy - Using artificial intelligence algorithms to continue the text

qxtony 1 Feb 04, 2022
Primary QPDF source code and documentation

QPDF QPDF is a command-line tool and C++ library that performs content-preserving transformations on PDF files. It supports linearization, encryption,

QPDF 2.2k Jan 04, 2023