Code for testing various M1 Chip benchmarks with TensorFlow.

Overview

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison

This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) against various other pieces of hardware.

It also has steps below to setup your M1, M1 Pro and M1 Max (steps should also for work Intel) Mac to run the code.

Who is this repo for?

You: have a new M1, M1 Pro, M1 Max machine and would like to get started doing machine learning and data science on it.

This repo: teaches you how to install the most common machine learning and data science packages (software) on your machine and make sure they run using sample code.

Machine Learning Experiments Conducted

All experiments were run with the same code. For Apple devices, TensorFlow environments were created with the steps below.

Notebook Number Experiment
00 TinyVGG model trained on CIFAR10 dataset with TensorFlow code.
01 EfficientNetB0 Feature Extractor on Food101 dataset with TensorFlow code.
02 RandomForestClassifier from Scikit-Learn trained with random search cross-validation on California Housing dataset.

Results

See the results directory.

Steps (how to test your M1 machine)

  1. Create an environment and install dependencies (see below)
  2. Clone this repo
  3. Run various notebooks (results come at the end of the notebooks)

How to setup a TensorFlow environment on M1, M1 Pro, M1 Max using Miniforge (shorter version)

If you're experienced with making environments and using the command line, follow this version. If not, see the longer version below.

  1. Download and install Homebrew from https://brew.sh. Follow the steps it prompts you to go through after installation.
  2. Download Miniforge3 (Conda installer) for macOS arm64 chips (M1, M1 Pro, M1 Max).
  3. Install Miniforge3 into home directory.
chmod +x ~/Downloads/Miniforge3-MacOSX-arm64.sh
sh ~/Downloads/Miniforge3-MacOSX-arm64.sh
source ~/miniforge3/bin/activate
  1. Restart terminal.
  2. Create a directory to setup TensorFlow environment.
mkdir tensorflow-test
cd tensorflow-test
  1. Make and activate Conda environment. Note: Python 3.8 is the most stable for using the following setup.
conda create --prefix ./env python=3.8
conda activate ./env
  1. Install TensorFlow dependencies from Apple Conda channel.
conda install -c apple tensorflow-deps
  1. Install base TensorFlow (Apple's fork of TensorFlow is called tensorflow-macos).
python -m pip install tensorflow-macos
  1. Install Apple's tensorflow-metal to leverage Apple Metal (Apple's GPU framework) for M1, M1 Pro, M1 Max GPU acceleration.
python -m pip install tensorflow-metal
  1. (Optional) Install TensorFlow Datasets to run benchmarks included in this repo.
python -m pip install tensorflow-datasets
  1. Install common data science packages.
conda install jupyter pandas numpy matplotlib scikit-learn
  1. Start Jupyter Notebook.
jupyter notebook
  1. Import dependencies and check TensorFlow version/GPU access.
import numpy as np
import pandas as pd
import sklearn
import tensorflow as tf
import matplotlib.pyplot as plt

# Check for TensorFlow GPU access
print(f"TensorFlow has access to the following devices:\n{tf.config.list_physical_devices()}")

# See TensorFlow version
print(f"TensorFlow version: {tf.__version__}")

If it all worked, you should see something like:

TensorFlow has access to the following devices:
[PhysicalDevice(name='/physical_device:CPU:0', device_type='CPU'),
PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
TensorFlow version: 2.8.0

How to setup a TensorFlow environment on M1, M1 Pro, M1 Max using Miniforge (longer version)

If you're new to creating environments, using a new M1, M1 Pro, M1 Max machine and would like to get started running TensorFlow and other data science libraries, follow the below steps.

Note: You're going to see the term "package manager" a lot below. Think of it like this: a package manager is a piece of software that helps you install other pieces (packages) of software.

Installing package managers (Homebrew and Miniforge)

  1. Download and install Homebrew from https://brew.sh. Homebrew is a package manager that sets up a lot of useful things on your machine, including Command Line Tools for Xcode, you'll need this to run things like git. The command to install Homebrew will look something like:
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

It will explain what it's doing and what you need to do as you go.

  1. Download the most compatible version of Miniforge (minimal installer for Conda specific to conda-forge, Conda is another package manager and conda-forge is a Conda channel) from GitHub.

If you're using an M1 variant Mac, it's "Miniforge3-MacOSX-arm64" <- click for direct download.

Clicking the link above will download a shell file called Miniforge3-MacOSX-arm64.sh to your Downloads folder (unless otherwise specified).

  1. Open Terminal.

  2. We've now got a shell file capable of installing Miniforge, but to do so we'll have to modify it's permissions to make it executable.

To do so, we'll run the command chmod -x FILE_NAME which stands for "change mode of FILE_NAME to -executable".

We'll then execute (run) the program using sh.

chmod +x ~/Downloads/Miniforge3-MacOSX-arm64.sh
sh ~/Downloads/Miniforge3-MacOSX-arm64.sh
  1. This should install Miniforge3 into your home directory (~/ stands for "Home" on Mac).

To check this, we can try to activate the (base) environment, we can do so using the source command.

source ~/miniforge3/bin/activate

If it worked, you should see something like the following in your terminal window.

(base) [email protected] ~ %
  1. We've just installed some new software and for it to fully work, we'll need to restart terminal.

Creating a TensorFlow environment

Now we've got the package managers we need, it's time to install TensorFlow.

Let's setup a folder called tensorflow-test (you can call this anything you want) and install everything in there to make sure it's working.

Note: An environment is like a virtual room on your computer. For example, you use the kitchen in your house for cooking because it's got all the tools you need. It would be strange to have an oven in your bedroom. The same thing on your computer. If you're going to be working on specific software, you'll want it all in one place and not scattered everywhere else.

  1. Make a directory called tensorflow-test. This is the directory we're going to be storing our environment. And inside the environment will be the software tools we need to run TensorFlow.

We can do so with the mkdir command which stands for "make directory".

mkdir tensorflow-test
  1. Change into tensorflow-test. For the rest of the commands we'll be running them inside the directory tensorflow-test so we need to change into it.

We can do this with the cd command which stands for "change directory".

cd tensorflow-test
  1. Now we're inside the tensorflow-test directory, let's create a new Conda environment using the conda command (this command was installed when we installed Miniforge above).

We do so using conda create --prefix ./env which stands for "conda create an environment with the name file/path/to/this/folder/env". The . stands for "everything before".

For example, if I didn't use the ./env, my filepath looks like: /Users/daniel/tensorflow-test/env

conda create --prefix ./env
  1. Activate the environment. If conda created the environment correctly, you should be able to activate it using conda activate path/to/environment.

Short version:

conda activate ./env

Long version:

conda activate /Users/daniel/tensorflow-test/env

Note: It's important to activate your environment every time you'd like to work on projects that use the software you install into that environment. For example, you might have one environment for every different project you work on. And all of the different tools for that specific project are stored in its specific environment.

If activating your environment went correctly, your terminal window prompt should look something like:

(/Users/daniel/tensorflow-test/env) [email protected] tensorflow-test %
  1. Now we've got a Conda environment setup, it's time to install the software we need.

Let's start by installing various TensorFlow dependencies (TensorFlow is a large piece of software and depends on many other pieces of software).

Rather than list these all out, Apple have setup a quick command so you can install almost everything TensorFlow needs in one line.

conda install -c apple tensorflow-deps

The above stands for "hey conda install all of the TensorFlow dependencies from the Apple Conda channel" (-c stands for channel).

If it worked, you should see a bunch of stuff being downloaded and installed for you.

  1. Now all of the TensorFlow dependencies have been installed, it's time install base TensorFlow.

Apple have created a fork (copy) of TensorFlow specifically for Apple Macs. It has all the features of TensorFlow with some extra functionality to make it work on Apple hardware.

This Apple fork of TensorFlow is called tensorflow-macos and is the version we'll be installing:

python -m pip install tensorflow-macos

Depending on your internet connection the above may take a few minutes since TensorFlow is quite a large piece of software.

  1. Now we've got base TensorFlow installed, it's time to install tensorflow-metal.

Why?

Machine learning models often benefit from GPU acceleration. And the M1, M1 Pro and M1 Max chips have quite powerful GPUs.

TensorFlow allows for automatic GPU acceleration if the right software is installed.

And Metal is Apple's framework for GPU computing.

So Apple have created a plugin for TensorFlow (also referred to as a TensorFlow PluggableDevice) called tensorflow-metal to run TensorFlow on Mac GPUs.

We can install it using:

python -m pip install tensorflow-metal

If the above works, we should now be able to leverage our Mac's GPU cores to speed up model training with TensorFlow.

  1. (Optional) Install TensorFlow Datasets. Doing the above is enough to run TensorFlow on your machine. But if you'd like to run the benchmarks included in this repo, you'll need TensorFlow Datasets.

TensorFlow Datasets provides a collection of common machine learning datasets to test out various machine learning code.

python -m pip install tensorflow-datasets
  1. Install common data science packages. If you'd like to run the benchmarks above or work on other various data science and machine learning projects, you're likely going to need Jupyter Notebooks, pandas for data manipulation, NumPy for numeric computing, matplotlib for plotting and Scikit-Learn for traditional machine learning algorithms and processing functions.

To install those in the current environment run:

conda install jupyter pandas numpy matplotlib scikit-learn
  1. Test it out. To see if everything worked, try starting a Jupyter Notebook and importing the installed packages.
# Start a Jupyter notebook
jupyter notebook

Once the notebook is started, in the first cell:

import numpy as np
import pandas as pd
import sklearn
import tensorflow as tf
import matplotlib.pyplot as plt

# Check for TensorFlow GPU access
print(tf.config.list_physical_devices())

# See TensorFlow version
print(tf.__version__)

If it all worked, you should see something like:

TensorFlow has access to the following devices:
[PhysicalDevice(name='/physical_device:CPU:0', device_type='CPU'),
PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
TensorFlow version: 2.5.0
  1. To see if it really worked, try running one of the notebooks above end to end!

And then compare your results to the benchmarks above.

Owner
Daniel Bourke
Machine Learning Engineer live on YouTube.
Daniel Bourke
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Supporting code for short YouTube series Neural Networks Demystified.

Neural Networks Demystified Supporting iPython notebooks for the YouTube Series Neural Networks Demystified. I've included formulas, code, and the tex

Stephen 1.3k Dec 23, 2022
Official code for "Focal Self-attention for Local-Global Interactions in Vision Transformers"

Focal Transformer This is the official implementation of our Focal Transformer -- "Focal Self-attention for Local-Global Interactions in Vision Transf

Microsoft 486 Dec 20, 2022
An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners

An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners This is a coarse version for MAE, only make the pretrain model, the fine

FlyEgle 214 Dec 29, 2022
The pytorch implementation of DG-Font: Deformable Generative Networks for Unsupervised Font Generation

DG-Font: Deformable Generative Networks for Unsupervised Font Generation The source code for 'DG-Font: Deformable Generative Networks for Unsupervised

130 Dec 05, 2022
Generalized hybrid model for mode-locked laser diodes with an extended passive cavity

GenHybridMLLmodel Generalized hybrid model for mode-locked laser diodes with an extended passive cavity This hybrid simulation strategy combines a tra

Stijn Cuyvers 3 Sep 21, 2022
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo

Divam Gupta 2.6k Jan 05, 2023
Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Primitive Representation Learning Network (PREN) This repository contains the code for our paper accepted by CVPR 2021 Primitive Representation Learni

Ruijie Yan 76 Jan 02, 2023
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
Inferred Model-based Fuzzer

IMF: Inferred Model-based Fuzzer IMF is a kernel API fuzzer that leverages an automated API model inferrence techinque proposed in our paper at CCS. I

SoftSec Lab 104 Sep 28, 2022
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

python-recsys 1.2k Dec 21, 2022
Rule based classification A hotel s customers dataset

Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re

Şebnem 4 Jan 02, 2022
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning

MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran

Jaron Lee 11 Oct 19, 2022
DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo.

dm_control: DeepMind Infrastructure for Physics-Based Simulation. DeepMind's software stack for physics-based simulation and Reinforcement Learning en

DeepMind 3k Dec 31, 2022
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

SEDE SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description

Rupert. 83 Nov 11, 2022
AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation

AttentionGAN-v2 for Unpaired Image-to-Image Translation AttentionGAN-v2 Framework The proposed generator learns both foreground and background attenti

Hao Tang 530 Dec 27, 2022
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
A little software to generate and save Julia or Mandelbrot's Fractals.

Julia-Mandelbrot-s-Fractals A little software to generate and save Julia or Mandelbrot's Fractals. Dependencies : Python 3.7 or more. (Also possible t

Olivier 0 Jul 09, 2022
[CVPR'22] Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast

wseg Overview The Pytorch implementation of Weakly Supervised Semantic Segmentation by Pixel-to-Prototype Contrast. [arXiv] Though image-level weakly

Ye Du 96 Dec 30, 2022