SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

Overview

SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Guided Adaptive Learning Rate for Training Large Transformer Models" (ICLR 2022).


Getting Start

  1. Pull and run docker
    pytorch/pytorch:1.5.1-cuda10.1-cudnn7-devel
  2. Install requirements
    pip install -r requirements.txt

Data and Model

  1. Download data and pre-trained models
    ./download.sh
    Please refer to this link for details on the GLUE benchmark.
  2. Preprocess data
    ./experiments/glue/prepro.sh
    For the most updated data processing details, please refer to the mt-dnn repo.

Fine-tuning Pre-trained Models using SAGE

We provide an example script for fine-tuning a pre-trained BERT-base model on MNLI using Adamax-SAGE:

./scripts/train_mnli_usadamax.sh GPUID

A few notices:

  • learning_rate and beta3 are two of the most important hyper-parameters. learning_rate that works well for Adamax/AdamW-SAGE is usually 2 to 5 times larger than that works well for Adamax/AdamW, depending on the tasks. beta3 that works well for Adamax/AdamW-SAGE is usually in the range of 0.6 and 0.9, depending on the tasks.

  • To use AdamW-SAGE, set argument --optim=usadamw. The current codebase only contains the implementation of Adamax-SAGE and AdamW-SAGE. Please refer to module/bert_optim.py for details. Please refer to our paper for integrating SAGE on other optimizers.

  • To fine-tune a pre-trained RoBERTa-base model, set arguments --init_checkpoint to the model path and set --encoder_type to 2. Other supported models are listed in pretrained_models.py.

  • To fine-tune on other tasks, set arguments --train_datasets and --test_datasets to the corresponding task names.


Citation

@inproceedings{
liang2022no,
title={No Parameters Left Behind: Sensitivity Guided Adaptive Learning Rate for Training Large Transformer Models},
author={Chen Liang and Haoming Jiang and Simiao Zuo and Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen and Tuo Zhao},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=cuvga_CiVND}
}

Contact Information

For help or issues related to this package, please submit a GitHub issue. For personal questions related to this paper, please contact Chen Liang ([email protected]).

Owner
Chen Liang
Chen Liang
AgML is a comprehensive library for agricultural machine learning

AgML is a comprehensive library for agricultural machine learning. Currently, AgML provides access to a wealth of public agricultural datasets for common agricultural deep learning tasks.

Plant AI and Biophysics Lab 1 Jul 07, 2022
An end-to-end machine learning library to directly optimize AUC loss

LibAUC An end-to-end machine learning library for AUC optimization. Why LibAUC? Deep AUC Maximization (DAM) is a paradigm for learning a deep neural n

Andrew 75 Dec 12, 2022
CS583: Deep Learning

CS583: Deep Learning

Shusen Wang 2.6k Dec 30, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022
Gesture-Volume-Control - This Python program can adjust the system's volume by using hand gestures

Gesture-Volume-Control This Python program can adjust the system's volume by usi

VatsalAryanBhatanagar 1 Dec 30, 2021
Distance correlation and related E-statistics in Python

dcor dcor: distance correlation and related E-statistics in Python. E-statistics are functions of distances between statistical observations in metric

Carlos Ramos Carreño 108 Dec 27, 2022
This is the source code for generating the ASL-Skeleton3D and ASL-Phono datasets. Check out the README.md for more details.

ASL-Skeleton3D and ASL-Phono Datasets Generator The ASL-Skeleton3D contains a representation based on mapping into the three-dimensional space the coo

Cleison Amorim 5 Nov 20, 2022
Code for the KDD 2021 paper 'Filtration Curves for Graph Representation'

Filtration Curves for Graph Representation This repository provides the code from the KDD'21 paper Filtration Curves for Graph Representation. Depende

Machine Learning and Computational Biology Lab 16 Oct 16, 2022
:fire: 2D and 3D Face alignment library build using pytorch

Face Recognition Detect facial landmarks from Python using the world's most accurate face alignment network, capable of detecting points in both 2D an

Adrian Bulat 6k Dec 31, 2022
Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Photo-Realistic-Super-Resoluton Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]

Harry Yang 199 Dec 01, 2022
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
Yolov3 pytorch implementation

YOLOV3 Pytorch实现 在bubbliiing大佬代码的基础上进行了修改,添加了部分注释。 预训练模型 预训练模型来源于bubbliiing。 链接:https://pan.baidu.com/s/1ncREw6Na9ycZptdxiVMApw 提取码:appk 训练自己的数据集 按照VO

4 Aug 27, 2022
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
《LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification》(AAAI 2021) GitHub:

LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification

76 Dec 05, 2022
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra

Mohsen Yavartanoo 21 Dec 12, 2022
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
Public Code for NIPS submission SimiGrad: Fine-Grained Adaptive Batching for Large ScaleTraining using Gradient Similarity Measurement

Public code for NIPS submission "SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement" This repo co

Heyang Qin 0 Oct 13, 2021
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
PoolFormer: MetaFormer is Actually What You Need for Vision

PoolFormer: MetaFormer is Actually What You Need for Vision (arXiv) This is a PyTorch implementation of PoolFormer proposed by our paper "MetaFormer i

Sea AI Lab 1k Dec 30, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* This code is based on MMdetecti

sunshine.lwt 112 Jan 05, 2023