Simple but maybe too simple config management through python data classes. We use it for machine learning.

Overview

👩‍✈️ Coqpit

CI

Simple, light-weight and no dependency config handling through python data classes with to/from JSON serialization/deserialization.

Currently it is being used by 🐸 TTS.

Why I need this

What I need from a ML configuration library...

  1. Fixing a general config schema in Python to guide users about expected values.

    Python is good but not universal. Sometimes you train a ML model and use it on a different platform. So, you need your model configuration file importable by other programming languages.

  2. Simple dynamic value and type checking with default values.

    If you are a beginner in a ML project, it is hard to guess the right values for your ML experiment. Therefore it is important to have some default values and know what range and type of input are expected for each field.

  3. Ability to decompose large configs.

    As you define more fields for the training dataset, data preprocessing, model parameters, etc., your config file tends to get quite large but in most cases, they can be decomposed, enabling flexibility and readability.

  4. Inheritance and nested configurations.

    Simply helps to keep configurations consistent and easier to maintain.

  5. Ability to override values from the command line when necessary.

    For instance, you might need to define a path for your dataset, and this changes for almost every run. Then the user should be able to override this value easily over the command line.

    It also allows easy hyper-parameter search without changing your original code. Basically, you can run different models with different parameters just using command line arguments.

  6. Defining dynamic or conditional config values.

    Sometimes you need to define certain values depending on the other values. Using python helps to define the underlying logic for such config values.

  7. No dependencies

    You don't want to install a ton of libraries for just configuration management. If you install one, then it is better to be just native python.

🔍 Examples

👉 Simple Coqpit

import os
from dataclasses import asdict, dataclass, field

from coqpit.coqpit import MISSING, Coqpit, check_argument


@dataclass
class SimpleConfig(Coqpit):
    val_a: int = 10
    val_b: int = None
    val_d: float = 10.21
    val_c: str = "Coqpit is great!"
    # mandatory field
    # raise an error when accessing the value if it is not changed. It is a way to define
    val_k: int = MISSING
    # optional field
    val_dict: dict = field(default_factory=lambda: {"val_aa": 10, "val_ss": "This is in a dict."})
    # list of list
    val_listoflist: List[List] = field(default_factory=lambda: [[1, 2], [3, 4]])
    val_listofunion: List[List[Union[str]]] = field(default_factory=lambda: [[1, 3], [1, "Hi!"]])

    def check_values(
        self,
    ):  # you can define explicit constraints on the fields using `check_argument()`
        """Check config fields"""
        c = asdict(self)
        check_argument("val_a", c, restricted=True, min_val=10, max_val=2056)
        check_argument("val_b", c, restricted=True, min_val=128, max_val=4058, allow_none=True)
        check_argument("val_c", c, restricted=True)


if __name__ == "__main__":
    file_path = os.path.dirname(os.path.abspath(__file__))
    config = SimpleConfig()

    # try MISSING class argument
    try:
        k = config.val_k
    except AttributeError:
        print(" val_k needs a different value before accessing it.")
    config.val_k = 1000

    # try serialization and deserialization
    print(config.serialize())
    print(config.to_json())
    config.save_json(os.path.join(file_path, "example_config.json"))
    config.load_json(os.path.join(file_path, "example_config.json"))
    print(config.pprint())

    # try `dict` interface
    print(*config)
    print(dict(**config))

    # value assignment by mapping
    config["val_a"] = -999
    print(config["val_a"])
    assert config.val_a == -999

👉 Serialization

import os
from dataclasses import asdict, dataclass, field
from coqpit import Coqpit, check_argument
from typing import List, Union


@dataclass
class SimpleConfig(Coqpit):
    val_a: int = 10
    val_b: int = None
    val_c: str = "Coqpit is great!"

    def check_values(self,):
        '''Check config fields'''
        c = asdict(self)
        check_argument('val_a', c, restricted=True, min_val=10, max_val=2056)
        check_argument('val_b', c, restricted=True, min_val=128, max_val=4058, allow_none=True)
        check_argument('val_c', c, restricted=True)


@dataclass
class NestedConfig(Coqpit):
    val_d: int = 10
    val_e: int = None
    val_f: str = "Coqpit is great!"
    sc_list: List[SimpleConfig] = None
    sc: SimpleConfig = SimpleConfig()
    union_var: Union[List[SimpleConfig], SimpleConfig] = field(default_factory=lambda: [SimpleConfig(),SimpleConfig()])

    def check_values(self,):
        '''Check config fields'''
        c = asdict(self)
        check_argument('val_d', c, restricted=True, min_val=10, max_val=2056)
        check_argument('val_e', c, restricted=True, min_val=128, max_val=4058, allow_none=True)
        check_argument('val_f', c, restricted=True)
        check_argument('sc_list', c, restricted=True, allow_none=True)
        check_argument('sc', c, restricted=True, allow_none=True)


if __name__ == '__main__':
    file_path = os.path.dirname(os.path.abspath(__file__))
    # init 🐸 dataclass
    config = NestedConfig()

    # save to a json file
    config.save_json(os.path.join(file_path, 'example_config.json'))
    # load a json file
    config2 = NestedConfig(val_d=None, val_e=500, val_f=None, sc_list=None, sc=None, union_var=None)
    # update the config with the json file.
    config2.load_json(os.path.join(file_path, 'example_config.json'))
    # now they should be having the same values.
    assert config == config2

    # pretty print the dataclass
    print(config.pprint())

    # export values to a dict
    config_dict = config.to_dict()
    # crate a new config with different values than the defaults
    config2 = NestedConfig(val_d=None, val_e=500, val_f=None, sc_list=None, sc=None, union_var=None)
    # update the config with the exported valuess from the previous config.
    config2.from_dict(config_dict)
    # now they should be having the same values.
    assert config == config2

👉 argparse handling and parsing.

import argparse
import os
from dataclasses import asdict, dataclass, field
from typing import List

from coqpit.coqpit import Coqpit, check_argument
import sys


@dataclass
class SimplerConfig(Coqpit):
    val_a: int = field(default=None, metadata={'help': 'this is val_a'})


@dataclass
class SimpleConfig(Coqpit):
    val_a: int = field(default=10,
                       metadata={'help': 'this is val_a of SimpleConfig'})
    val_b: int = field(default=None, metadata={'help': 'this is val_b'})
    val_c: str = "Coqpit is great!"
    mylist_with_default: List[SimplerConfig] = field(
        default_factory=lambda:
        [SimplerConfig(val_a=100),
         SimplerConfig(val_a=999)],
        metadata={'help': 'list of SimplerConfig'})

    # mylist_without_default: List[SimplerConfig] = field(default=None, metadata={'help': 'list of SimplerConfig'})  # NOT SUPPORTED YET!

    def check_values(self, ):
        '''Check config fields'''
        c = asdict(self)
        check_argument('val_a', c, restricted=True, min_val=10, max_val=2056)
        check_argument('val_b',
                       c,
                       restricted=True,
                       min_val=128,
                       max_val=4058,
                       allow_none=True)
        check_argument('val_c', c, restricted=True)


def main():
    # initial config
    config = SimpleConfig()
    print(config.pprint())

    # reference config that we like to match with the config above
    config_ref = SimpleConfig(val_a=222,
                              val_b=999,
                              val_c='this is different',
                              mylist_with_default=[
                                  SimplerConfig(val_a=222),
                                  SimplerConfig(val_a=111)
                              ])

    # create and init argparser with Coqpit
    parser = argparse.ArgumentParser()
    parser = config.init_argparse(parser)
    parser.print_help()
    args = parser.parse_args()

    # parse the argsparser
    config.parse_args(args)
    config.pprint()
    # check the current config with the reference config
    assert config == config_ref


if __name__ == '__main__':
    sys.argv.extend(['--coqpit.val_a', '222'])
    sys.argv.extend(['--coqpit.val_b', '999'])
    sys.argv.extend(['--coqpit.val_c', 'this is different'])
    sys.argv.extend(['--coqpit.mylist_with_default.0.val_a', '222'])
    sys.argv.extend(['--coqpit.mylist_with_default.1.val_a', '111'])
    main()

🤸‍♀️ Merging coqpits

import os
from dataclasses import dataclass
from coqpit.coqpit import Coqpit, check_argument


@dataclass
class CoqpitA(Coqpit):
    val_a: int = 10
    val_b: int = None
    val_d: float = 10.21
    val_c: str = "Coqpit is great!"


@dataclass
class CoqpitB(Coqpit):
    val_d: int = 25
    val_e: int = 257
    val_f: float = -10.21
    val_g: str = "Coqpit is really great!"


if __name__ == '__main__':
    file_path = os.path.dirname(os.path.abspath(__file__))
    coqpita = CoqpitA()
    coqpitb = CoqpitB()
    coqpitb.merge(coqpita)
    print(coqpitb.val_a)
    print(coqpitb.pprint())
Comments
  • Allow file-like objects when saving and loading

    Allow file-like objects when saving and loading

    Allow users to save the configs to arbitrary locations through file-like objects. Would e.g. simplify coqui-ai/TTS#683 without adding an fsspec dependency to this library.

    opened by agrinh 6
  • Latest PR causes an issue when a `Serializable` has default None

    Latest PR causes an issue when a `Serializable` has default None

    https://github.com/coqui-ai/coqpit/blob/5379c810900d61ae19d79b73b03890fa103487dd/coqpit/coqpit.py#L539

    @reuben I am on it but if you have an easy fix go for it. Right now it breaks all the TTS trainings.

    opened by erogol 2
  • [feature request] change the `arg_perfix` of coqpit

    [feature request] change the `arg_perfix` of coqpit

    Is it possible to change the arg_perfix when using Coqpit object to another value / empty string? I see the option is supported in the code by changing arg_perfix, but not sure how to access it using the proposed API.

    Thanks for the package, looks very useful!

    opened by mosheman5 1
  • Setup CI to push new tags to PyPI automatically

    Setup CI to push new tags to PyPI automatically

    I'm gonna add a workflow to automatically upload new tags to PyPI. @erogol when you have a chance could you transfer the coqpit project on PyPI to the coqui user?[0] Then you can add your personal account as a maintainer also, so you don't have to change your local setup.

    In the mean time I'll iterate on testpypi.

    [0] https://pypi.org/user/coqui/

    opened by reuben 1
  • Fix rsetattr

    Fix rsetattr

    rsetattr() is updated to pass the new test cases below.

    I don't know if it is the right solution. It might be that rsetattr confuses when coqpit is used as a prefix.

    opened by erogol 0
  • [feature request] Warning when unexpected key is loaded but not present in class

    [feature request] Warning when unexpected key is loaded but not present in class

    Here is an toy scenario where it would be nice to have a warning

    from dataclasses import dataclass
    from coqpit import Coqpit
    
    @dataclass
    class SimpleConfig(Coqpit):
        val_a: int = 10
        val_b: int = None
    
    if __name__ == "__main__":
        config = SimpleConfig()
    
        tmp_config = config.to_dict()
        tmp_config["unknown_key"] = "Ignored value"
        config.from_dict(tmp_config)
        print(config.to_json())
    

    There the value of config.to_json() is

    {
        "val_a": 10,
        "val_b": null
    }
    

    Which is expected behaviour, but we should get a warning that some keys were ignored (IMO)

    feature request 
    opened by WeberJulian 6
  • [feature request] Add `is_defined`

    [feature request] Add `is_defined`

    Use coqpit.is_defined('field') to check if "field" in coqpit and coqpit.field is not None:

    It is a common condition when you parse out a coqpit object.

    feature request 
    opened by erogol 0
  • Allow grouping of argparse fields according to subclassing

    Allow grouping of argparse fields according to subclassing

    When using inheritance to extend config definitions the resulting ArgumentParser has all fields flattened out. It would be nice to group fields by class and allow some control over ordering.

    opened by reuben 2
Releases(v0.0.17)
Owner
coqui
Coqui, a startup providing open speech tech for everyone 🐸
coqui
Transpiles some Python into human-readable Golang.

pytago Transpiles some Python into human-readable Golang. Try out the web demo Installation and usage There are two "officially" supported ways to use

Michael Phelps 318 Jan 03, 2023
An unofficial opensource Pokemon cursor theme for Windows and Linux.

pokemon-cursor An unofficial opensource Pokemon cursor theme for Windows and Linux. Cursor Sizes 22 24 28 32 40 48 56 64 72 80 88 96 Colors Quick inst

Kaiz Khatri 72 Dec 26, 2022
Example applications, dashboards, scripts, notebooks, and other utilities built using Polygon.io

Polygon.io Examples Example applications, dashboards, scripts, notebooks, and other utilities built using Polygon.io. Examples Preview Name Type Langu

Tim Paine 4 Jun 01, 2022
A subleq VM/interpreter created by me for no reason

What is Dumbleq? Dumbleq is a dumb Subleq VM/interpreter implementation created by me for absolutely no reason at all. What is Subleq? If you haven't

Phu Minh 2 Nov 13, 2022
This repository contains the code for the python introduction lab

This repository contains the code for the python introduction lab. The purpose is to have a fairly simple python assignment that introduces the basic features and tools of python

1 Jan 24, 2022
A modern python module including many useful features that make discord bot programming extremely easy.

discord-super-utils Documentation Secondary Documentation A modern python module including many useful features that make discord bot programming extr

106 Dec 19, 2022
Cloud Native sample microservices showcasing Full Stack Observability using AppDynamics and ThousandEyes

Cloud Native Sample Bookinfo App Observability Bookinfo is a sample application composed of four Microservices written in different languages.

Cisco DevNet 13 Jul 21, 2022
Python library for creating PEG parsers

PyParsing -- A Python Parsing Module Introduction The pyparsing module is an alternative approach to creating and executing simple grammars, vs. the t

Pyparsing 1.7k Jan 03, 2023
A dog facts python module

A dog facts python module

Fayas Noushad 3 Nov 28, 2021
Huggingface package for the discrete VAE used for DALL-E.

DALL-E-Tokenizer Huggingface package for the discrete VAE used for DALL-E.

MyungHoon Jin 5 Sep 01, 2021
A Bot that adds YouTube views to your video of choice

YoutubeViews Free Youtube viewer bot A Bot that adds YouTube views to your video of choice Installation git clone https://github.com/davdtheemonk/Yout

ProbablyX 5 Dec 06, 2022
Data 25 Star Wars Project With Python

Data 25 Star Wars Project Instructions The character data in your MongoDB database has been pulled from https://swapi.tech/. As well as 'people', the

1 Dec 24, 2021
kodi addon 115网盘

plugin.video.115 kodi addon 115网盘 插件,需要kodi 18以上版本,原码播放需配合 https://github.com/feelfar/115proxy-for-kodi 使用 安装 HEAD 由于release包尚未释出,可直接下载源代码zip包

109 Dec 29, 2022
HiQ - A Modern Observability System

🦉 A Modern Observability System HiQ is a declarative, non-intrusive, dynamic and transparent tracking system for both monolithic application and dist

Oracle Sample Code 40 Aug 21, 2022
Pytorch implementation of "Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates"

Peer Loss functions This repository is the (Multi-Class & Deep Learning) Pytorch implementation of "Peer Loss Functions: Learning from Noisy Labels wi

Kushal Shingote 1 Feb 08, 2022
A pypi package details search python module

A pypi package details search python module

Fayas Noushad 5 Nov 30, 2021
Flexible constructor to create dynamic list of heterogeneous properties for some kind of entity

Flexible constructor to create dynamic list of heterogeneous properties for some kind of entity. This set of helpers useful to create properties like contacts or attributes for describe car/computer/

Django Stars 24 Jul 21, 2022
Senior Comprehensive Project For Python

Senior Comprehensive Project Author: Grey Hutchinson My project, which I nicknamed “Murmur”, was to create a research tool that would use neural netwo

1 May 29, 2022
Aerial Ace is a helper bot for poketwo which provide various functionalities on top of being a pokedex.

Aerial Ace is a helper bot for poketwo which provide various functionalities on top of being a pokedex.

Devanshu Mishra 1 Dec 01, 2021
PyCASCLib: CASC interface for Warcraft III

PyCASCLib CASC interface for Warcraft III. This repo provides bindings for JCASC: https://github.com/DrSuperGood/JCASC Installation Jdk is required fo

2 Jun 04, 2022