Deploy AutoML as a service using Flask

Overview

AutoML Service

Deploy automated machine learning (AutoML) as a service using Flask, for both pipeline training and pipeline serving.

The framework implements a fully automated time series classification pipeline, automating both feature engineering and model selection and optimization using Python libraries, TPOT and tsfresh.

Check out the blog post for more info.

Resources:

  • TPOT– Automated feature preprocessing and model optimization tool
  • tsfresh– Automated time series feature engineering and selection
  • Flask– A web development microframework for Python

Architecture

The application exposes both model training and model predictions with a RESTful API. For model training, input data and labels are sent via POST request, a pipeline is trained, and model predictions are accessible via a prediction route.

Pipelines are stored to a unique key, and thus, live predictions can be made on the same data using different feature construction and modeling pipelines.

An automated pipeline for time-series classification.

The model training logic is exposed as a REST endpoint. Raw, labeled training data is uploaded via a POST request and an optimal model is developed.

Raw training data is uploaded via a POST request and a model prediction is returned.

Using the app

View the Jupyter Notebook for an example.

Deploying

# deploy locally
python automl_service.py
# deploy on cloud foundry
cf push

Usage

Train a pipeline:

train_url = 'http://0.0.0.0:8080/train_pipeline'
train_files = {'raw_data': open('data/data_train.json', 'rb'),
               'labels'  : open('data/label_train.json', 'rb'),
               'params'  : open('parameters/train_parameters_model2.yml', 'rb')}

# post request to train pipeline
r_train = requests.post(train_url, files=train_files)
result_df = json.loads(r_train.json())

returns:

{'featureEngParams': {'default_fc_parameters': "['median', 'minimum', 'standard_deviation', 
                                                 'sum_values', 'variance', 'maximum', 
                                                 'length', 'mean']",
                      'impute_function': 'impute',
                      ...},
 'mean_cv_accuracy': 0.865,
 'mean_cv_roc_auc': 0.932,
 'modelId': 1,
 'modelType': "Pipeline(steps=[('stackingestimator', StackingEstimator(estimator=LinearSVC(...))),
                               ('logisticregression', LogisticRegressionClassifier(solver='liblinear',...))])"
 'trainShape': [1647, 8],
 'trainTime': 1.953}

Serve pipeline predictions:

serve_url = 'http://0.0.0.0:8080/serve_prediction'
test_files = {'raw_data': open('data/data_test.json', 'rb'),
              'params' : open('parameters/test_parameters_model2.yml', 'rb')}

# post request to serve predictions from trained pipeline
r_test  = requests.post(serve_url, files=test_files)
result = pd.read_json(r_test.json()).set_index('id')
example_id prediction
1 0.853
2 0.991
3 0.060
4 0.995
5 0.003
... ...

View all trained models:

r = requests.get('http://0.0.0.0:8080/models')
pipelines = json.loads(r.json())
{'1':
    {'mean_cv_accuracy': 0.873,
     'modelType': "RandomForestClassifier(...),
     ...},
 '2':
    {'mean_cv_accuracy': 0.895,
     'modelType': "GradientBoostingClassifier(...),
     ...},
 '3':
    {'mean_cv_accuracy': 0.859,
     'modelType': "LogisticRegressionClassifier(...),
     ...},
...}

Running the tests

Supply a user argument for the host.

# use local app
py.test --host http://0.0.0.0:8080
# use cloud-deployed app
py.test --host http://ROUTE-HERE

Scaling the architecture

For production, I would suggest splitting training and serving into seperate applications, and incorporating a fascade API. Also it would be best to use a shared cache such as Redis or Pivotal Cloud Cache to allow other applications and multiple instances of the pipeline to access the trained model. Here is a potential architecture.

A scalable model training and model serving architecture.

Author

Chris Rawles

Owner
Chris Rawles
...
Chris Rawles
CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning applications.

SmartSim Example Zoo This repository contains CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning appl

Cray Labs 14 Mar 30, 2022
🌊 River is a Python library for online machine learning.

River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition is to be the go-to library for doing machine learning on strea

OnlineML 4k Jan 03, 2023
The Fuzzy Labs guide to the universe of open source MLOps

Open Source MLOps This is the Fuzzy Labs guide to the universe of free and open source MLOps tools. Contents What is MLOps, anyway? Data version contr

Fuzzy Labs 352 Dec 29, 2022
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learn

Vowpal Wabbit 8.1k Dec 30, 2022
Automatically create Faiss knn indices with the most optimal similarity search parameters.

It selects the best indexing parameters to achieve the highest recalls given memory and query speed constraints.

Criteo 419 Jan 01, 2023
Self Organising Map (SOM) for clustering of atomistic samples through unsupervised learning.

Self Organising Map for Clustering of Atomistic Samples - V2 Description Self Organising Map (also known as Kohonen Network) implemented in Python for

Franco Aquistapace 0 Nov 16, 2021
Decentralized deep learning in PyTorch. Built to train models on thousands of volunteers across the world.

Hivemind: decentralized deep learning in PyTorch Hivemind is a PyTorch library to train large neural networks across the Internet. Its intended usage

1.3k Jan 08, 2023
Decision tree is the most powerful and popular tool for classification and prediction

Diabetes Prediction Using Decision Tree Introduction Decision tree is the most powerful and popular tool for classification and prediction. A Decision

Arjun U 1 Jan 23, 2022
PROTEIN EXPRESSION ANALYSIS FOR DOWN SYNDROME

PROTEIN-EXPRESSION-ANALYSIS-FOR-DOWN-SYNDROME Down syndrome (DS) is a chromosomal disorder where organisms have an extra chromosome 21, sometimes know

1 Jan 20, 2022
Iris species predictor app is used to classify iris species created using python's scikit-learn, fastapi, numpy and joblib packages.

Iris Species Predictor Iris species predictor app is used to classify iris species using their sepal length, sepal width, petal length and petal width

Siva Prakash 5 Apr 05, 2022
Ml based project which uses regression technique to predict the price.

Price-Predictor Ml based project which uses regression technique to predict the price. I have used various regression models and finds the model with

Garvit Verma 1 Jul 09, 2022
Class-imbalanced / Long-tailed ensemble learning in Python. Modular, flexible, and extensible

IMBENS: Class-imbalanced Ensemble Learning in Python Language: English | Chinese/δΈ­ζ–‡ Links: Documentation | Gallery | PyPI | Changelog | Source | Downl

Zhining Liu 176 Jan 04, 2023
Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)"

CRAN Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)" This code doesn't exa

4 Nov 11, 2021
Tools for mathematical optimization region

Tools for mathematical optimization region

ζž—ζ™― 15 Nov 30, 2022
This handbook accompanies the course: Machine Learning with Hung-Yi Lee

This handbook accompanies the course: Machine Learning with Hung-Yi Lee

RenChu Wang 472 Dec 31, 2022
Implementation of K-Nearest Neighbors Algorithm Using PySpark

KNN With Spark Implementation of KNN using PySpark. The KNN was used on two separate datasets (https://archive.ics.uci.edu/ml/datasets/iris and https:

Zachary Petroff 4 Dec 30, 2022
Apple-voice-recognition - Machine Learning

Apple-voice-recognition Machine Learning How does Siri work? Siri is based on large-scale Machine Learning systems that employ many aspects of data sc

Harshith VH 1 Oct 22, 2021
BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python

BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python. Some of the algorithms included are mor

Jared M. Smith 40 Aug 26, 2022
PyTorch extensions for high performance and large scale training.

Description FairScale is a PyTorch extension library for high performance and large scale training on one or multiple machines/nodes. This library ext

Facebook Research 2k Dec 28, 2022
A simple machine learning python sign language detection project.

SST Coursework 2022 About the app A python application that utilises the tensorflow object detection algorithm to achieve automatic detection of ameri

Xavier Koh 2 Jun 30, 2022