Highly interpretable classifiers for scikit learn, producing easily understood decision rules instead of black box models

Overview

Highly interpretable, sklearn-compatible classifier based on decision rules

This is a scikit-learn compatible wrapper for the Bayesian Rule List classifier developed by Letham et al., 2015 (see Letham's original code), extended by a minimum description length-based discretizer (Fayyad & Irani, 1993) for continuous data, and by an approach to subsample large datasets for better performance.

It produces rule lists, which makes trained classifiers easily interpretable to human experts, and is competitive with state of the art classifiers such as random forests or SVMs.

For example, an easily understood Rule List model of the well-known Titanic dataset:

IF male AND adult THEN survival probability: 21% (19% - 23%)
ELSE IF 3rd class THEN survival probability: 44% (38% - 51%)
ELSE IF 1st class THEN survival probability: 96% (92% - 99%)
ELSE survival probability: 88% (82% - 94%)

Letham et al.'s approach only works on discrete data. However, this approach can still be used on continuous data after discretization. The RuleListClassifier class also includes a discretizer that can deal with continuous data (using Fayyad & Irani's minimum description length principle criterion, based on an implementation by navicto).

The inference procedure is slow on large datasets. If you have more than a few thousand data points, and only numeric data, try the included BigDataRuleListClassifier(training_subset=0.1), which first determines a small subset of the training data that is most critical in defining a decision boundary (the data points that are hardest to classify) and learns a rule list only on this subset (you can specify which estimator to use for judging which subset is hardest to classify by passing any sklearn-compatible estimator in the subset_estimator parameter - see examples/diabetes_bigdata_demo.py).

Usage

The project requires pyFIM, scikit-learn, and pandas to run.

The included RuleListClassifier works as a scikit-learn estimator, with a model.fit(X,y) method which takes training data X (numpy array or pandas DataFrame; continuous, categorical or mixed data) and labels y.

The learned rules of a trained model can be displayed simply by casting the object as a string, e.g. print model, or by using the model.tostring(decimals=1) method and optionally specifying the rounding precision.

Numerical data in X is automatically discretized. To prevent discretization (e.g. to protect columns containing categorical data represented as integers), pass the list of protected column names in the fit method, e.g. model.fit(X,y,undiscretized_features=['CAT_COLUMN_NAME']) (entries in undiscretized columns will be converted to strings and used as categorical values - see examples/hepatitis_mixeddata_demo.py).

Usage example:

from RuleListClassifier import *
from sklearn.datasets.mldata import fetch_mldata
from sklearn.cross_validation import train_test_split
from sklearn.ensemble import RandomForestClassifier

feature_labels = ["#Pregnant","Glucose concentration test","Blood pressure(mmHg)","Triceps skin fold thickness(mm)","2-Hour serum insulin (mu U/ml)","Body mass index","Diabetes pedigree function","Age (years)"]
    
data = fetch_mldata("diabetes") # get dataset
y = (data.target+1)/2 # target labels (0 or 1)
Xtrain, Xtest, ytrain, ytest = train_test_split(data.data, y) # split

# train classifier (allow more iterations for better accuracy; use BigDataRuleListClassifier for large datasets)
model = RuleListClassifier(max_iter=10000, class1label="diabetes", verbose=False)
model.fit(Xtrain, ytrain, feature_labels=feature_labels)

print "RuleListClassifier Accuracy:", model.score(Xtest, ytest), "Learned interpretable model:\n", model
print "RandomForestClassifier Accuracy:", RandomForestClassifier().fit(Xtrain, ytrain).score(Xtest, ytest)
"""
**Output:**
RuleListClassifier Accuracy: 0.776041666667 Learned interpretable model:
Trained RuleListClassifier for detecting diabetes
==================================================
IF Glucose concentration test : 157.5_to_inf THEN probability of diabetes: 81.1% (72.5%-72.5%)
ELSE IF Body mass index : -inf_to_26.3499995 THEN probability of diabetes: 5.2% (1.9%-1.9%)
ELSE IF Glucose concentration test : -inf_to_103.5 THEN probability of diabetes: 14.4% (8.8%-8.8%)
ELSE IF Age (years) : 27.5_to_inf THEN probability of diabetes: 59.6% (51.8%-51.8%)
ELSE IF Glucose concentration test : 103.5_to_127.5 THEN probability of diabetes: 15.9% (8.0%-8.0%)
ELSE probability of diabetes: 44.7% (29.5%-29.5%)
=================================================

RandomForestClassifier Accuracy: 0.729166666667
"""
Owner
Tamas Madl
Tamas Madl
Pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code

pandas-method-chaining pandas-method-chaining is a plugin for flake8 that provides method chaining linting for pandas code. It is a fork from pandas-v

Francis 5 May 14, 2022
Pandas Machine Learning and Quant Finance Library Collection

Pandas Machine Learning and Quant Finance Library Collection

148 Dec 07, 2022
SPCL 48 Dec 12, 2022
This is a curated list of medical data for machine learning

Medical Data for Machine Learning This is a curated list of medical data for machine learning. This list is provided for informational purposes only,

Andrew L. Beam 5.4k Dec 26, 2022
Practical Time-Series Analysis, published by Packt

Practical Time-Series Analysis This is the code repository for Practical Time-Series Analysis, published by Packt. It contains all the supporting proj

Packt 325 Dec 23, 2022
A chain of stores, 10 different stores and 50 different requests a 3-month demand forecast for its product.

Demand-Forecasting Business Problem A chain of stores, 10 different stores and 50 different requests a 3-month demand forecast for its product.

Ayşe Nur Türkaslan 3 Mar 06, 2022
Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

EconML/CausalML KDD 2021 Tutorial 124 Dec 28, 2022
Production Grade Machine Learning Service

This project is made to help you scale from a basic Machine Learning project for research purposes to a production grade Machine Learning web service

Abdullah Zaiter 10 Apr 04, 2022
Test symmetries with sklearn decision tree models

Test symmetries with sklearn decision tree models Setup Begin from an environment with a recent version of python 3. source setup.sh Leave the enviro

Rupert Tombs 2 Jul 19, 2022
[HELP REQUESTED] Generalized Additive Models in Python

pyGAM Generalized Additive Models in Python. Documentation Official pyGAM Documentation: Read the Docs Building interpretable models with Generalized

daniel servén 747 Jan 05, 2023
A webpage that utilizes machine learning to extract sentiments from tweets.

Tweets_Classification_Webpage The goal of this project is to be able to predict what rating customers on social media platforms would give to products

Ayaz Nakhuda 1 Dec 30, 2021
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.7k Jan 04, 2023
Optimal Randomized Canonical Correlation Analysis

ORCCA Optimal Randomized Canonical Correlation Analysis This project is for the python version of ORCCA algorithm. It depends on Numpy for matrix calc

Yinsong Wang 1 Nov 21, 2021
Solve automatic numerical differentiation problems in one or more variables.

numdifftools The numdifftools library is a suite of tools written in _Python to solve automatic numerical differentiation problems in one or more vari

Per A. Brodtkorb 181 Dec 16, 2022
An open-source library of algorithms to analyse time series in GPU and CPU.

An open-source library of algorithms to analyse time series in GPU and CPU.

Shapelets 216 Dec 30, 2022
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models.

TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models. The library is a collection of Keras models

538 Jan 01, 2023
Open source time series library for Python

PyFlux PyFlux is an open source time series library for Python. The library has a good array of modern time series models, as well as a flexible array

Ross Taylor 2k Jan 02, 2023
Traingenerator 🧙 A web app to generate template code for machine learning ✨

Traingenerator 🧙 A web app to generate template code for machine learning ✨ 🎉 Traingenerator is now live! 🎉

Johannes Rieke 1.2k Jan 07, 2023
Machine Learning for Time-Series with Python.Published by Packt

Machine-Learning-for-Time-Series-with-Python Become proficient in deriving insights from time-series data and analyzing a model’s performance Links Am

Packt 124 Dec 28, 2022
Python module for machine learning time series:

seglearn Seglearn is a python package for machine learning time series or sequences. It provides an integrated pipeline for segmentation, feature extr

David Burns 536 Dec 29, 2022