Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Related tags

Deep LearningPPR10K
Overview

Portrait Photo Retouching with PPR10K

Paper | Supplementary Material

PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency
Jie Liang*, Hui Zeng*, Miaomiao Cui, Xuansong Xie and Lei Zhang.
In CVPR 2021.

The proposed Portrait Photo Retouching dataset (PPR10K) is a large-scale and diverse dataset that contains:

  • 11,161 high-quality raw portrait photos (resolutions from 4K to 8K) in 1,681 groups;
  • 3 versions of manual retouched targets of all photos given by 3 expert retouchers;
  • full resolution human-region masks of all photos.

Samples

sample_images

Two example groups of photos from the PPR10K dataset. Top: the raw photos; Bottom: the retouched results from expert-a and the human-region masks. The raw photos exhibit poor visual quality and large variance in subject views, background contexts, lighting conditions and camera settings. In contrast, the retouched results demonstrate both good visual quality (with human-region priority) and group-level consistency.

This dataset is first of its kind to consider the two special and practical requirements of portrait photo retouching task, i.e., Human-Region Priority and Group-Level Consistency. Three main challenges are expected to be tackled in the follow-up researches:

  • Flexible and content-adaptive models for such a diverse task regarding both image contents and lighting conditions;
  • Highly efficient models to process practical resolution from 4K to 8K;
  • Robust and stable models to meet the requirement of group-level consistency.

Agreement

  • All files in the PPR10K dataset are available for non-commercial research purposes only.
  • You agree not to reproduce, duplicate, copy, sell, trade, resell or exploit for any commercial purposes, any portion of the images and any portion of derived data.

Overview

All data is hosted on GoogleDrive, OneDrive and 百度网盘 (验证码: mrwn):

Path Size Files Format Description
PPR10K-dataset 406 GB 176,072 Main folder
├  raw 313 GB 11,161 RAW All photos in raw format (.CR2, .NEF, .ARW, etc)
├  xmp_source 130 MB 11,161 XMP Default meta-file of the raw photos in CameraRaw, used in our data augmentation
├  xmp_target_a 130 MB 11,161 XMP CameraRaw meta-file of the raw photos recoding the full adjustments by expert a
├  xmp_target_b 130 MB 11,161 XMP CameraRaw meta-file of the raw photos recoding the full adjustments by expert b
├  xmp_target_c 130 MB 11,161 XMP CameraRaw meta-file of the raw photos recoding the full adjustments by expert c
├  masks_full 697 MB 11,161 PNG Full-resolution human-region masks in binary format
├  masks_360p 56 MB 11,161 PNG 360p human-region masks for fast training and validation
├  train_val_images_tif_360p 91 GB 97894 TIF 360p Source (16 bit tiff, with 5 versions of augmented images) and target (8 bit tiff) images for fast training and validation
├  pretrained_models 268 MB 12 PTH pretrained models for all 3 versions
└  hists 624KB 39 PNG Overall statistics of the dataset

One can directly use the 360p (of 540x360 or 360x540 resolution in sRGB color space) training and validation files (photos, 5 versions of augmented photos and the corresponding human-region masks) we have provided following the settings in our paper (train with the first 8,875 files and validate with the last 2286 files).
Also, see the instructions to customize your data (e.g., augment the training samples regarding illuminations and colors, get photos with higher or full resolutions).

Training and Validating the PPR using 3DLUT

Installation

  • Clone this repo.
git clone https://github.com/csjliang/PPR10K
cd PPR10K/code_3DLUT/
  • Install dependencies.
pip install -r requirements.txt
  • Build. Modify the CUDA path in trilinear_cpp/setup.sh adaptively and
cd trilinear_cpp
sh trilinear_cpp/setup.sh

Training

  • Training without HRP and GLC strategy, save models:
python train.py --data_path [path_to_dataset] --gpu_id [gpu_id] --use_mask False --output_dir [path_to_save_models]
  • Training with HRP and without GLC strategy, save models:
python train.py --data_path [path_to_dataset] --gpu_id [gpu_id] --use_mask True --output_dir [path_to_save_models]
  • Training without HRP and with GLC strategy, save models:
python train_GLC.py --data_path [path_to_dataset] --gpu_id [gpu_id] --use_mask False --output_dir [path_to_save_models]
  • Training with both HRP and GLC strategy, save models:
python train_GLC.py --data_path [path_to_dataset] --gpu_id [gpu_id] --use_mask True --output_dir [path_to_save_models]

Evaluation

  • Generate the retouched results:
python validation.py --data_path [path_to_dataset] --gpu_id [gpu_id] --model_dir [path_to_models]
  • Use matlab to calculate the measures in our paper:
calculate_metrics(source_dir, target_dir, mask_dir)

Pretrained Models

mv your/path/to/pretrained_models/* saved_models/
  • specify the --model_dir and --epoch (-1) to validate or initialize the training using the pretrained models, e.g.,
python validation.py --data_path [path_to_dataset] --gpu_id [gpu_id] --model_dir mask_noglc_a --epoch -1
python train.py --data_path [path_to_dataset] --gpu_id [gpu_id] --use_mask True --output_dir mask_noglc_a --epoch -1

Citation

If you use this dataset or code for your research, please cite our paper.

@inproceedings{jie2021PPR10K,
  title={PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency},
  author={Liang, Jie and Zeng, Hui and Cui, Miaomiao and Xie, Xuansong and Zhang, Lei},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

Related Projects

3D LUT

Contact

Should you have any questions, please contact me via [email protected].

Code for "Multi-Compound Transformer for Accurate Biomedical Image Segmentation"

News The code of MCTrans has been released. if you are interested in contributing to the standardization of the medical image analysis community, plea

97 Jan 05, 2023
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network arch

Zhaowei Cai 47 Dec 30, 2022
Contrastive Learning Inverts the Data Generating Process

Official code to reproduce the results and data presented in the paper Contrastive Learning Inverts the Data Generating Process.

71 Nov 25, 2022
A flexible ML framework built to simplify medical image reconstruction and analysis experimentation.

meddlr Getting Started Meddlr is a config-driven ML framework built to simplify medical image reconstruction and analysis problems. Installation To av

Arjun Desai 36 Dec 16, 2022
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Kevin Lu 1.4k Jan 07, 2023
This project aims to be a handler for input creation and running of multiple RICEWQ simulations.

What is autoRICEWQ? This project aims to be a handler for input creation and running of multiple RICEWQ simulations. What is RICEWQ? From the descript

Yass Fuentes 1 Feb 01, 2022
A PyTorch Implementation of Neural IMage Assessment

NIMA: Neural IMage Assessment This is a PyTorch implementation of the paper NIMA: Neural IMage Assessment (accepted at IEEE Transactions on Image Proc

yunxiaos 418 Dec 29, 2022
Read and write layered TIFF ImageSourceData and ImageResources tags

Read and write layered TIFF ImageSourceData and ImageResources tags Psdtags is a Python library to read and write the Adobe Photoshop(r) specific Imag

Christoph Gohlke 4 Feb 05, 2022
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022
Differentiable architecture search for convolutional and recurrent networks

Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX

Hanxiao Liu 3.7k Jan 09, 2023
Python library to receive live stream events like comments and gifts in realtime from TikTok LIVE.

TikTokLive A python library to connect to and read events from TikTok's LIVE service A python library to receive and decode livestream events such as

Isaac Kogan 277 Dec 23, 2022
This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking

SimpleTrack This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking. We are still working on writing t

TuSimple 189 Dec 26, 2022
Official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space

NeuralFusion This is the official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space. We provide code to train the proposed pipel

53 Jan 01, 2023
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
내가 보려고 정리한 <프로그래밍 기초 Ⅰ> / organized for me

Programming-Basics 프로그래밍 기초 Ⅰ 아카이브 Do it! 점프 투 파이썬 주차 강의주제 비고 1주차 Syllabus 2주차 자료형 - 숫자형 3주차 자료형 - 문자열형 4주차 입력과 출력 5주차 제어문 - 조건문 if 6주차 제어문 - 반복문 whil

KIMMINSEO 1 Mar 07, 2022
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
SARS-Cov-2 Recombinant Finder for fasta sequences

Sc2rf - SARS-Cov-2 Recombinant Finder Pronounced: Scarf What's this? Sc2rf can search genome sequences of SARS-CoV-2 for potential recombinants - new

Lena Schimmel 41 Oct 03, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

11 Nov 08, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022