PyWorld3 is a Python implementation of the World3 model

Overview

Logo

The World3 model revisited in Python

License: CeCILL 2.1


PyWorld3 is a Python implementation of the World3 model, as described in the book Dynamics of Growth in a Finite World. This version slightly differs from the previous one used in the world-known reference the Limits to Growth, because of different numerical parameters and a slightly different model structure.

The World3 model is based on an Ordinary Differential Equation solved by a Backward Euler method. Although it is described with 12 state variables, taking internal delay functions into account raises the problem to the 29th order. For the sake of clarity and model calibration purposes, the model is structured into 5 main sectors: Population, Capital, Agriculture, Persistent Pollution and Nonrenewable Resource.

Install and Hello World3

Install pyworld3 either via:

pip install pyworld3

or by cloning the repository, installing the requirements numpy, scipy and matplotlib and do:

python setup.py install

Run the provided example to simulate the standard run, known as the Business as usual scenario:

import pyworld3
pyworld3.hello_world3()

As shown below, the simulation output compares well with the original print. For a tangible understanding by the general audience, the usual chart plots the trajectories of the:

  • population (POP) from the Population sector,
  • nonrenewable resource fraction remaining (NRFR) from the Nonrenewable Resource sector,
  • food per capita (FPC) from the Agriculture sector,
  • industrial output per capita (IOPC) from the Capital sector,
  • index of persistent pollution (PPOLX) from the Persistent Pollution sector.

How to tune your own simulation

One simulation requires a script with the following steps:

from pyworld3 import World3

world3 = World3()                    # choose the time limits and step.
world3.init_world3_constants()       # choose the model constants.
world3.init_world3_variables()       # initialize all variables.
world3.set_world3_table_functions()  # get tables from a json file.
world3.set_world3_delay_functions()  # initialize delay functions.
world3.run_world3()

You should be able to tune your own simulations quite quickly as long as you want to modify:

  • time-related parameters during the instantiation,
  • constants with the init_world3_constants method,
  • nonlinear functions by editing your modified tables ./your_modified_tables.json based on the initial json file pyworld3/functions_table_world3.json and calling world3.set_world3_table_functions("./your_modified_tables.json").

Licence

The project is under the CeCILL 2.1 licence, a GPL-like licence compatible with international and French laws. See the terms for more details.

How to cite PyWorld3 with Bibtex

To cite the project in your paper via BibTex:

@softwareversion{vanwynsberghe:hal-03414394v1,
  TITLE = {{PyWorld3 - The World3 model revisited in Python}},
  AUTHOR = {Vanwynsberghe, Charles},
  URL = {https://hal.archives-ouvertes.fr/hal-03414394},
  YEAR = {2021},
  MONTH = Nov,
  SWHID = {swh:1:dir:9d4ad7aec99385fa4d5057dece7a989d8892d866;origin=https://hal.archives-ouvertes.fr/hal-03414394;visit=swh:1:snp:be7d9ffa2c1be6920d774d1f193e49ada725ea5e;anchor=swh:1:rev:da5e3732d9d832734232d88ea33af99ab8987d52;path=/},
  LICENSE = {CeCILL Free Software License Agreement v2.1},
  HAL_ID = {hal-03414394},
}

References and acknowledgment

  • Meadows, Dennis L., William W. Behrens, Donella H. Meadows, Roger F. Naill, Jørgen Randers, and Erich Zahn. Dynamics of Growth in a Finite World. Cambridge, MA: Wright-Allen Press, 1974.
  • Meadows, Donella H., Dennis L. Meadows, Jorgen Randers, and William W. Behrens. The Limits to Growth. New York 102, no. 1972 (1972): 27.
  • Markowich, P. Sensitivity Analysis of Tech 1-A Systems Dynamics Model for Technological Shift, (1979).
Comments
  • No output files using

    No output files using "example_world3_standard.py"

    Hello,

    I try your script. I can't find the "fig_world3_standard_x.pdf" files anywhere after using "example_world3_standard.py".

    I'm not confortable with Python, so may be I don't use the script properly.

    Regards.

    bug good first issue 
    opened by 012abcd 9
  • Missing requirement for cbr in Population

    Missing requirement for cbr in Population

        @requires(["cbr"], ["pop"])
        def _update_cbr(self, k, jk):
            """
            From step k requires: POP
            """
            self.cbr[k] = 1000 * self.b[jk] / self.pop[k]
    

    I believe the function _update_cbr in the Population class is missing the requirement for the birth rate

    opened by iancostalves 1
  • 29th order

    29th order

    Hi, I believe the 29th order in the README is a bit misleading.. The word order is used for the order of the differential equation, not the number of state variables. I believe the highest DE order of world3 is three.

    https://pure.tue.nl/ws/files/3428351/79372.pdf

    opened by burakbayramli 0
  • Improved usability with Bokeh

    Improved usability with Bokeh

    I'm not sure this is an upstream consideration or a sub-project so I wanted to raise it here.

    This model should lend itself quite well to a bokeh model (https://bokeh.org) allowing live adjustment of the input variables and the enabling and disabling of particular plots and other functionality. I may attempt to wrap something up if I get some time as I don't expect it to be too difficult.

    opened by klattimer 4
  • Additional time series data

    Additional time series data

    Immediately it becomes obvious that global temperature and sea levels should be plotted, but also population density, and energy consumption. This would suggest the possibility of tools to prepare and overlay any time-series data set.

    opened by klattimer 0
  • Adding a plot of the historic population

    Adding a plot of the historic population

    Hello, Thank you for making this python version of world3. I think it would be useful to add a option in order to plot the historic population next to the predicted population. Would you mind if I add an option to do so and prepare a pull request ? Best, A. below a draft (historic population in purple) draft :

    opened by alan-man 4
Releases(v1.1)
Owner
Charles Vanwynsberghe
Associate professor
Charles Vanwynsberghe
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Dec 30, 2022
NLP project that works with news (NER, context generation, news trend analytics)

СоАвтор СоАвтор – платформа и открытый набор инструментов для редакций и журналистов-фрилансеров, который призван сделать процесс создания контента ма

38 Jan 04, 2023
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 358 Dec 24, 2022
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
This project aims to conduct a text information retrieval and text mining on medical research publication regarding Covid19 - treatments and vaccinations.

Project: Text Analysis - This project aims to conduct a text information retrieval and text mining on medical research publication regarding Covid19 -

1 Mar 14, 2022
A collection of Korean Text Datasets ready to use using Tensorflow-Datasets.

tfds-korean A collection of Korean Text Datasets ready to use using Tensorflow-Datasets. TensorFlow-Datasets를 이용한 한국어/한글 데이터셋 모음입니다. Dataset Catalog |

Jeong Ukjae 20 Jul 11, 2022
Script to download some free japanese lessons in portuguse from NHK

Nihongo_nhk This is a script to download some free japanese lessons in portuguese from NHK. It can be executed by installing the packages with: pip in

Matheus Alves 2 Jan 06, 2022
(ACL-IJCNLP 2021) Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models.

BERT Convolutions Code for the paper Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models. Contains expe

mlpc-ucsd 21 Jul 18, 2022
Words-per-minute - A terminal app written in python utilizing the curses module that tests the user's ability to type

words-per-minute A terminal app written in python utilizing the curses module th

Tanim Islam 1 Jan 14, 2022
Faster, modernized fork of the language identification tool langid.py

py3langid py3langid is a fork of the standalone language identification tool langid.py by Marco Lui. Original license: BSD-2-Clause. Fork license: BSD

Adrien Barbaresi 12 Nov 05, 2022
ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.

ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading, processing, executing, or translating structured text or binary files.

Antlr Project 13.6k Jan 05, 2023
Stanford CoreNLP provides a set of natural language analysis tools written in Java

Stanford CoreNLP Stanford CoreNLP provides a set of natural language analysis tools written in Java. It can take raw human language text input and giv

Stanford NLP 8.8k Jan 07, 2023
DVC-NLP-Simple-usecase

dvc-NLP-simple-usecase DVC NLP project Reference repository: official reference repo DVC STUDIO MY View Bag of Words- Krish Naik TF-IDF- Krish Naik ST

SUNNY BHAVEEN CHANDRA 2 Oct 02, 2022
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

Max Woolf 4.8k Dec 30, 2022
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

286 Jan 02, 2023
Build Text Rerankers with Deep Language Models

Reranker is a lightweight, effective and efficient package for training and deploying deep languge model reranker in information retrieval (IR), question answering (QA) and many other natural languag

Luyu Gao 140 Dec 06, 2022
Pangu-Alpha for Transformers

Pangu-Alpha for Transformers Usage Download MindSpore FP32 weights for GPU from here to data/Pangu-alpha_2.6B.ckpt Activate MindSpore environment and

One 5 Oct 01, 2022
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022
A simple tool to update bib entries with their official information (e.g., DBLP or the ACL anthology).

Rebiber: A tool for normalizing bibtex with official info. We often cite papers using their arXiv versions without noting that they are already PUBLIS

(Bill) Yuchen Lin 2k Jan 01, 2023