CCNet: Criss-Cross Attention for Semantic Segmentation (TPAMI 2020 & ICCV 2019).

Overview

CCNet: Criss-Cross Attention for Semantic Segmentation

Paper Links: Our most recent TPAMI version with improvements and extensions (Earlier ICCV version).

By Zilong Huang, Xinggang Wang, Yunchao Wei, Lichao Huang, Chang Huang, Humphrey Shi, Wenyu Liu and Thomas S. Huang.

Updates

2021/02: The pure python implementation of CCNet is released in the branch pure-python. Thanks Serge-weihao.

2019/08: The new version CCNet is released on branch Pytorch-1.1 which supports Pytorch 1.0 or later and distributed multiprocessing training and testing This current code is a implementation of the experiments on Cityscapes in the CCNet ICCV version. We implement our method based on open source pytorch segmentation toolbox.

2018/12: Renew the code and release trained models with R=1,2. The trained model with R=2 achieves 79.74% on val set and 79.01% on test set with single scale testing.

2018/11: Code released.

Introduction

motivation of CCNet Long-range dependencies can capture useful contextual information to benefit visual understanding problems. In this work, we propose a Criss-Cross Network (CCNet) for obtaining such important information through a more effective and efficient way. Concretely, for each pixel, our CCNet can harvest the contextual information of its surrounding pixels on the criss-cross path through a novel criss-cross attention module. By taking a further recurrent operation, each pixel can finally capture the long-range dependencies from all pixels. Overall, our CCNet is with the following merits:

  • GPU memory friendly
  • High computational efficiency
  • The state-of-the-art performance

Architecture

Overview of CCNet Overview of the proposed CCNet for semantic segmentation. The proposed recurrent criss-cross attention takes as input feature maps H and output feature maps H'' which obtain rich and dense contextual information from all pixels. Recurrent criss-cross attention module can be unrolled into R=2 loops, in which all Criss-Cross Attention modules share parameters.

Visualization of the attention map

Overview of Attention map To get a deeper understanding of our RCCA, we visualize the learned attention masks as shown in the figure. For each input image, we select one point (green cross) and show its corresponding attention maps when R=1 and R=2 in columns 2 and 3 respectively. In the figure, only contextual information from the criss-cross path of the target point is capture when R=1. By adopting one more criss-cross module, ie, R=2 the RCCA can finally aggregate denser and richer contextual information compared with that of R=1. Besides, we observe that the attention module could capture semantic similarity and long-range dependencies.

License

CCNet is released under the MIT License (refer to the LICENSE file for details).

Citing CCNet

If you find CCNet useful in your research, please consider citing:

@article{huang2020ccnet,
  author={Huang, Zilong and Wang, Xinggang and Wei, Yunchao and Huang, Lichao and Shi, Humphrey and Liu, Wenyu and Huang, Thomas S.},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  title={CCNet: Criss-Cross Attention for Semantic Segmentation}, 
  year={2020},
  month={},
  volume={},
  number={},
  pages={1-1},
  keywords={Semantic Segmentation;Graph Attention;Criss-Cross Network;Context Modeling},
  doi={10.1109/TPAMI.2020.3007032},
  ISSN={1939-3539}}

@article{huang2018ccnet,
    title={CCNet: Criss-Cross Attention for Semantic Segmentation},
    author={Huang, Zilong and Wang, Xinggang and Huang, Lichao and Huang, Chang and Wei, Yunchao and Liu, Wenyu},
    booktitle={ICCV},
    year={2019}}

Instructions for Code (2019/08 version):

Requirements

To install PyTorch==0.4.0 or 0.4.1, please refer to https://github.com/pytorch/pytorch#installation.
4 x 12G GPUs (e.g. TITAN XP)
Python 3.6
gcc (GCC) 4.8.5
CUDA 8.0

Compiling

# Install **Pytorch**
$ conda install pytorch torchvision -c pytorch

# Install **Apex**
$ git clone https://github.com/NVIDIA/apex
$ cd apex
$ pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

# Install **Inplace-ABN**
$ git clone https://github.com/mapillary/inplace_abn.git
$ cd inplace_abn
$ python setup.py install

Dataset and pretrained model

Plesae download cityscapes dataset and unzip the dataset into YOUR_CS_PATH.

Please download MIT imagenet pretrained resnet101-imagenet.pth, and put it into dataset folder.

Training and Evaluation

Training script.

python train.py --data-dir ${YOUR_CS_PATH} --random-mirror --random-scale --restore-from ./dataset/resnet101-imagenet.pth --gpu 0,1,2,3 --learning-rate 1e-2 --input-size 769,769 --weight-decay 1e-4 --batch-size 8 --num-steps 60000 --recurrence 2

Recommend】You can also open the OHEM flag to reduce the performance gap between val and test set.

python train.py --data-dir ${YOUR_CS_PATH} --random-mirror --random-scale --restore-from ./dataset/resnet101-imagenet.pth --gpu 0,1,2,3 --learning-rate 1e-2 --input-size 769,769 --weight-decay 1e-4 --batch-size 8 --num-steps 60000 --recurrence 2 --ohem 1 --ohem-thres 0.7 --ohem-keep 100000

Evaluation script.

python evaluate.py --data-dir ${YOUR_CS_PATH} --restore-from snapshots/CS_scenes_60000.pth --gpu 0 --recurrence 2

All in one.

./run_local.sh YOUR_CS_PATH

Models

We run CCNet with R=1,2 three times on cityscape dataset separately and report the results in the following table. Please note there exist some problems about the validation/testing set accuracy gap (1~2%). You need to run multiple times to achieve a small gap or turn on OHEM flag. Turning on OHEM flag also can improve the performance on the val set. In general, I recommend you use OHEM in training step.

We train all the models on fine training set and use the single scale for testing. The trained model with R=2 79.74 can also achieve about 79.01 mIOU on cityscape test set with single scale testing (for saving time, we use the whole image as input).

R mIOU on cityscape val set (single scale) Link
1 77.31 & 77.91 & 76.89 77.91
2 79.74 & 79.22 & 78.40 79.74
2+OHEM 78.67 & 80.00 & 79.83 80.00

Acknowledgment

We thank NSFC, ARC DECRA DE190101315, ARC DP200100938, HUST-Horizon Computer Vision ResearchCenter, and IBM-ILLINOIS Center for Cognitive ComputingSystems Research (C3SR).

Thanks to the Third Party Libs

Self-attention related methods:
Object Context Network
Dual Attention Network
Semantic segmentation toolboxs:
pytorch-segmentation-toolbox
semantic-segmentation-pytorch
PyTorch-Encoding

Owner
Zilong Huang
HUSTer
Zilong Huang
Code for EMNLP2020 long paper: BERT-Attack: Adversarial Attack Against BERT Using BERT

BERT-ATTACK Code for our EMNLP2020 long paper: BERT-ATTACK: Adversarial Attack Against BERT Using BERT Dependencies Python 3.7 PyTorch 1.4.0 transform

Linyang Li 142 Jan 04, 2023
The datasets and code of ACL 2021 paper "Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions".

Aspect-Category-Opinion-Sentiment (ACOS) Quadruple Extraction This repo contains the data sets and source code of our paper: Aspect-Category-Opinion-S

NUSTM 144 Jan 02, 2023
Keras implementation of AdaBound

AdaBound for Keras Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate. Usage A

Somshubra Majumdar 132 Sep 23, 2022
TART - A PyTorch implementation for Transition Matrix Representation of Trees with Transposed Convolutions

TART This project is a PyTorch implementation for Transition Matrix Representati

Lee Sael 2 Jan 19, 2022
An example of Scatterbrain implementation (combining local attention and Performer)

An example of Scatterbrain implementation (combining local attention and Performer)

HazyResearch 97 Jan 02, 2023
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
CLIPImageClassifier wraps clip image model from transformers

CLIPImageClassifier CLIPImageClassifier wraps clip image model from transformers. CLIPImageClassifier is initialized with the argument classes, these

Jina AI 6 Sep 12, 2022
Abstractive opinion summarization system (SelSum) and the largest dataset of Amazon product summaries (AmaSum). EMNLP 2021 conference paper.

Learning Opinion Summarizers by Selecting Informative Reviews This repository contains the codebase and the dataset for the corresponding EMNLP 2021

Arthur Bražinskas 39 Jan 01, 2023
Retina blood vessel segmentation with a convolutional neural network

Retina blood vessel segmentation with a convolution neural network (U-net) This repository contains the implementation of a convolutional neural netwo

Orobix 1.2k Jan 06, 2023
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

Xinyu Yi 261 Dec 31, 2022
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
This library provides an abstraction to perform Model Versioning using Weight & Biases.

Description This library provides an abstraction to perform Model Versioning using Weight & Biases. Features Version a new trained model Promote a mod

Hector Lopez Almazan 2 Jan 28, 2022
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS

SUN Group @ UMN 28 Aug 03, 2022
Self-training with Weak Supervision (NAACL 2021)

This repo holds the code for our weak supervision framework, ASTRA, described in our NAACL 2021 paper: "Self-Training with Weak Supervision"

Microsoft 148 Nov 20, 2022
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Hiring research interns for visual transformer

Multimedia Research 484 Dec 29, 2022
Official implementation of VQ-Diffusion

Vector Quantized Diffusion Model for Text-to-Image Synthesis Overview This is the official repo for the paper: [Vector Quantized Diffusion Model for T

Microsoft 592 Jan 03, 2023
Official implementation of Unfolded Deep Kernel Estimation for Blind Image Super-resolution.

Unfolded Deep Kernel Estimation for Blind Image Super-resolution Hongyi Zheng, Hongwei Yong, Lei Zhang, "Unfolded Deep Kernel Estimation for Blind Ima

Z80 15 Dec 26, 2022
PyTorch implementation of DirectCLR from paper Understanding Dimensional Collapse in Contrastive Self-supervised Learning

DirectCLR DirectCLR is a simple contrastive learning model for visual representation learning. It does not require a trainable projector as SimCLR. It

Meta Research 49 Dec 21, 2022