[CVPR 2022] Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper

Overview

template-pose

Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper (accepted to CVPR 2022)

Van Nguyen Nguyen, Yinlin Hu, Yang Xiao, Mathieu Salzmann and Vincent Lepetit

Check out our paper and webpage for details!

figures/method.png

If our project is helpful for your research, please consider citing :

@inproceedings{nguyen2022template,
    title={Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions},
    author={Nguyen, Van Nguyen and Hu, Yinlin and Xiao, Yang and Salzmann, Mathieu and Lepetit, Vincent},
    booktitle={Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
    year={2022}}

Table of Content

Methodology 🧑‍🎓

We introduce template-pose, which estimates 3D pose of new objects (can be very different from the training ones, i.e LINEMOD dataset) with only their 3D models. Our method requires neither a training phase on these objects nor images depicting them.

Two settings are considered in this work:

Dataset Predict ID object In-plane rotation
(Occlusion-)LINEMOD Yes No
T-LESS No Yes

Installation 👨‍🔧

We recommend creating a new Anaconda environment to use template-pose. Use the following commands to setup a new environment:

conda env create -f environment.yml
conda activate template

Optional: Installation of BlenderProc is required to render synthetic images. It can be ignored if you use our provided template. More details can be found in Datasets.

Datasets 😺 🔌

Before downloading the datasets, you may change this line to define the $ROOT folder (to store data and results).

There are two options:

  1. To download our pre-processed datasets (15GB) + SUN397 dataset (37GB)
./data/download_preprocessed_data.sh

Optional: You can download with following gdrive links and unzip them manually. We recommend keeping $DATA folder structure as detailed in ./data/README to keep pipeline simple:

  1. To download the original datasets and process them from scratch (process GT poses, render templates, compute nearest neighbors). All the main steps are detailed in ./data/README.
./data/download_and_process_from_scratch.sh

For any training with backbone ResNet50, we initialise with pretrained features of MOCOv2 which can be downloaded with the following command:

python -m lib.download_weight --model_name MoCov2

T-LESS 🔌

1. To launch a training on T-LESS:

python train_tless.py --config_path ./config_run/TLESS.json

2. To reproduce the results on T-LESS:

To download pretrained weights (by default, they are saved at $ROOT/pretrained/TLESS.pth):

python -m lib.download_weight --model_name TLESS

Optional: You can download manually with this link

To evaluate model with the pretrained weight:

python test_tless.py --config_path ./config_run/TLESS.json --checkpoint $ROOT/pretrained/TLESS.pth

LINEMOD and Occlusion-LINEMOD 😺

1. To launch a training on LINEMOD:

python train_linemod.py --config_path config_run/LM_$backbone_$split_name.json

For example, with “base" backbone and split #1:

python train_linemod.py --config_path config_run/LM_baseNetwork_split1.json

2. To reproduce the results on LINEMOD:

To download pretrained weights (by default, they are saved at $ROOT/pretrained):

python -m lib.download_weight --model_name LM_$backbone_$split_name

Optional: You can download manually with this link

To evaluate model with a checkpoint_path:

python test_linemod.py --config_path config_run/LM_$backbone_$split_name.json --checkpoint checkpoint_path

For example, with “base" backbone and split #1:

python -m lib.download_weight --model_name LM_baseNetwork_split1
python test_linemod.py --config_path config_run/LM_baseNetwork_split1.json --checkpoint $ROOT/pretrained/LM_baseNetwork_split1.pth

Acknowledgement

The code is adapted from PoseContrast, DTI-Clustering, CosyPose and BOP Toolkit. Many thanks to them!

The authors thank Martin Sundermeyer, Paul Wohlhart and Shreyas Hampali for their fast reply, feedback!

Contact

If you have any question, feel free to create an issue or contact the first author at [email protected]

Owner
Van Nguyen Nguyen
PhD student at Imagine-ENPC, France
Van Nguyen Nguyen
Vector Neurons: A General Framework for SO(3)-Equivariant Networks

Vector Neurons: A General Framework for SO(3)-Equivariant Networks Created by Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacc

Congyue Deng 332 Dec 29, 2022
PowerGridworld: A Framework for Multi-Agent Reinforcement Learning in Power Systems

PowerGridworld provides users with a lightweight, modular, and customizable framework for creating power-systems-focused, multi-agent Gym environments that readily integrate with existing training fr

National Renewable Energy Laboratory 37 Dec 17, 2022
JupyterLite demo deployed to GitHub Pages 🚀

JupyterLite Demo JupyterLite deployed as a static site to GitHub Pages, for demo purposes. ✨ Try it in your browser ✨ ➡️ https://jupyterlite.github.io

JupyterLite 223 Jan 04, 2023
《Fst Lerning of Temporl Action Proposl vi Dense Boundry Genertor》(AAAI 2020)

Update 2020.03.13: Release tensorflow-version and pytorch-version DBG complete code. 2019.11.12: Release tensorflow-version DBG inference code. 2019.1

Tencent 338 Dec 16, 2022
A-ESRGAN aims to provide better super-resolution images by using multi-scale attention U-net discriminators.

A-ESRGAN: Training Real-World Blind Super-Resolution with Attention-based U-net Discriminators The authors are hidden for the purpose of double blind

77 Dec 16, 2022
Representing Long-Range Context for Graph Neural Networks with Global Attention

Graph Augmentation Graph augmentation/self-supervision/etc. Algorithms gcn gcn+virtual node gin gin+virtual node PNA GraphTrans Augmentation methods N

UC Berkeley RISE 67 Dec 30, 2022
Keras like implementation of Deep Learning architectures from scratch using numpy.

Mini-Keras Keras like implementation of Deep Learning architectures from scratch using numpy. How to contribute? The project contains implementations

MANU S PILLAI 5 Oct 10, 2021
Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices, ACM Multimedia 2021

Codes for ECBSR Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices Xindong Zhang, Hui Zeng, Lei Zhang ACM Multimedia 202

xindong zhang 236 Dec 26, 2022
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022
Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

BBB Face Recognizer Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time. Instalati

Rafael Azevedo 232 Dec 24, 2022
Official code repository for Continual Learning In Environments With Polynomial Mixing Times

Official code for Continual Learning In Environments With Polynomial Mixing Times Continual Learning in Environments with Polynomial Mixing Times This

Sharath Raparthy 1 Dec 19, 2021
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
A simple code to perform canny edge contrast detection on images.

CECED-Canny-Edge-Contrast-Enhanced-Detection A simple code to perform canny edge contrast detection on images. A simple code to process images using c

Happy N. Monday 3 Feb 15, 2022
Simulator for FRC 2022 challenge: Rapid React

rrsim Simulator for FRC 2022 challenge: Rapid React out-1.mp4 Usage In order to run the simulator use the following: python3 rrsim.py [config_path] wh

1 Jan 18, 2022
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022
PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch.

snn-localization repo PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch. Install Dependencies Orig

Sami BARCHID 1 Jan 06, 2022
Python Interview Questions

Python Interview Questions Clone the code to your computer. You need to understand the code in main.py and modify the content in if __name__ =='__main

ClassmateLin 575 Dec 28, 2022
Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.

TorchSeg This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch. Highlights Modular De

ycszen 1.4k Jan 02, 2023
Multimodal commodity image retrieval 多模态商品图像检索

Multimodal commodity image retrieval 多模态商品图像检索 Not finished yet... introduce explain:The specific description of the project and the product image dat

hongjie 8 Nov 25, 2022