Local-Global Stratified Transformer for Efficient Video Recognition

Overview

DualFormer

This repo is the implementation of our manuscript entitled "Local-Global Stratified Transformer for Efficient Video Recognition". Our model is built on a popular video package called mmaction2. This repo also refers to the code templates provided by PVT, Twins and Swin. This repo is released under the Apache 2.0 license.

Introduction

DualFormer is a Transformer architecture that can effectively and efficiently perform space-time attention for video recognition. Specifically, our DualFormer stratifies the full space-time attention into dual cascaded levels, i.e., to first learn fine-grained local space-time interactions among nearby 3D tokens, followed by the capture of coarse-grained global dependencies between the query token and the coarse-grained global pyramid contexts. Experimental results show the superiority of DualFormer on five video benchmarks against existing methods. In particular, DualFormer sets new state-of-the-art 82.9%/85.2% top-1 accuracy on Kinetics-400/600 with ∼1000G inference FLOPs which is at least 3.2× fewer than existing methods with similar performances.

Installation & Requirement

Please refer to install.md for installation. The docker files are also provided for convenient usage - cuda10.1 and cuda11.0.

All models are trained on 8 Nvidia A100 GPUs. For example, training a DualFormer-T on Kinetics-400 takes ∼31 hours on 8 A100 GPUs, while training a larger model DualFormer-B on Kinetics-400 requires ∼3 days on 8 A100 GPUs.

Data Preparation

Please first see data_preparation.md for a general knowledge of data preparation.

  • For Kinetics-400/600, as these are dynamic datasets (videos may be removed from YouTube), we employ this repo to download the original files and the annotatoins. Only a few number of corrupted videos are removed (around 50).
  • For other datasets, i.e., HMDB-51, UCF-101 and Diving-48, we use the data downloader provided by mmaction2 as aforementioned.

The full supported datasets are listed below (more details in supported_datasets.md):

HMDB51 (Homepage) (ICCV'2011) UCF101 (Homepage) (CRCV-IR-12-01) ActivityNet (Homepage) (CVPR'2015) Kinetics-[400/600/700] (Homepage) (CVPR'2017)
SthV1 (Homepage) (ICCV'2017) SthV2 (Homepage) (ICCV'2017) Diving48 (Homepage) (ECCV'2018) Jester (Homepage) (ICCV'2019)
Moments in Time (Homepage) (TPAMI'2019) Multi-Moments in Time (Homepage) (ArXiv'2019) HVU (Homepage) (ECCV'2020) OmniSource (Homepage) (ECCV'2020)

Models

We present a major part of the model results, the configuration files, and downloading links in the following table. The FLOPs is computed by fvcore, where we omit the classification head since it has low impact to the FLOPs.

Dataset Version Pretrain GFLOPs Param (M) Top-1 Config Download
K400 Tiny IN-1K 240 21.8 79.5 link link
K400 Small IN-1K 636 48.9 80.6 link link
K400 Base IN-1K 1072 86.8 81.1 link link
K600 Base IN-22K 1072 86.8 85.2 link link
Diving-48 Small K400 1908 48.9 81.8 link link
HMDB-51 Small K400 1908 48.9 76.4 link link
UCF-101 Small K400 1908 48.9 97.5 link link

Visualization

We visualize the attention maps at the last layer of our model generated by Grad-CAM on Kinetics-400. As shown in the following three gifs, our model successfully learns to focus on the relevant parts in the video clip. Left: flying kites. Middle: counting money. Right: walking dogs.

You can use the following commend to visualize the attention weights:

python demo/demo_gradcam.py 
    
     
     
       --target-layer-name 
      
        --out-filename 
        
       
      
     
    
   

For example, to visualize the last layer of DualFormer-S on a K400 video (-cii-Z0dW2E_000020_000030.mp4), please run:

python demo/demo_gradcam.py \
    configs/recognition/dualformer/dualformer_small_patch244_window877_kinetics400_1k.py \
    checkpoints/k400/dualformer_small_patch244_window877.pth \
    /dataset/kinetics-400/train_files/-cii-Z0dW2E_000020_000030.mp4 \
    --target-layer-name backbone/blocks/3/3 --fps 10 \
    --out-filename output/-cii-Z0dW2E_000020_000030.gif

User Guide

Folder Structure

As our implementation is based on mmaction2, we specify our contributions as follows:

Testing

# single-gpu testing
python tools/test.py 
    
    
      --eval top_k_accuracy

# multi-gpu testing
bash tools/dist_test.sh 
      
       
       
         --eval top_k_accuracy 
       
      
     
    
   

Example 1: to validate a DualFormer-T model on Kinetics-400 dataset with 8 GPUs, please run:

bash tools/dist_test.sh configs/recognition/dualformer/dualformer_tiny_patch244_window877_kinetics400_1k.py checkpoints/k400/dualformer_tiny_patch244_window877.pth 8 --eval top_k_accuracy

You will obtain the result as follows:

Example 2: to validate a DualFormer-S model on Diving-48 dataset with 4 GPUs, please run:

bash tools/dist_test.sh configs/recognition/dualformer/dualformer_small_patch244_window877_diving48.py checkpoints/diving48/dualformer_small_patch244_window877.pth 4 --eval top_k_accuracy 

The output will be as follows:

Training from scratch

To train a video recognition model from scratch for Kinetics-400, please run:

# single-gpu training
python tools/train.py 
   
     [other optional arguments]

# multi-gpu training
bash tools/dist_train.sh 
     
     
       [other optional arguments]

     
    
   

For example, to train a DualFormer-T model for Kinetics-400 dataset with 8 GPUs, please run:

bash tools/dist_train.sh ./configs/recognition/dualformer/dualformer_tiny_patch244_window877_kinetics400_1k.py 8 

Training a DualFormer-S model for Kinetics-400 dataset with 8 GPUs, please run:

bash tools/dist_train.sh ./configs/recognition/dualformer/dualformer_small_patch244_window877_kinetics400_1k.py 8 

Training with pre-trained 2D models

To train a video recognition model with pre-trained image models, please run:

# single-gpu training
python tools/train.py 
   
     --cfg-options model.backbone.pretrained=
    
      [model.backbone.use_checkpoint=True] [other optional arguments]

# multi-gpu training
bash tools/dist_train.sh 
      
      
        --cfg-options model.backbone.pretrained=
       
         [model.backbone.use_checkpoint=True] [other optional arguments] 
       
      
     
    
   

For example, to train a DualFormer-T model for Kinetics-400 dataset with 8 GPUs, please run:

bash tools/dist_train.sh ./configs/recognition/dualformer/dualformer_tiny_patch244_window877_kinetics400_1k.py 8 --cfg-options model.backbone.pretrained=
    

   

Training a DualFormer-B model for Kinetics-400 dataset with 8 GPUs, please run:

bash tools/dist_train.sh ./configs/recognition/dualformer/dualformer_base_patch244_window877_kinetics400_1k.py 8 --cfg-options model.backbone.pretrained=
    

   

Note: use_checkpoint is used to save GPU memory. Please refer to this page for more details.

Training with Token Labelling

We also present the first attempt to improve the video recognition model by generalizing Token Labelling to videos as additional augmentations, in which MixToken is turned off as it does not work on our video datasets. For instance, to train a small version of DualFormer using DualFormer-B as the annotation model on the fly, please run:

bash tools/dist_train.sh configs/recognition/dualformer/dualformer_tiny_tokenlabel_patch244_window877_kinetics400_1k.py 8 --cfg-options model.backbone.pretrained='checkpoints/pretrained_2d/dualformer_tiny.pth' --validate 

Notice that we place the checkpoint of the annotation model at 'checkpoints/k400/dualformer_base_patch244_window877.pth'. You can change it to anywhere you want, or modify the path variable in this file.

We present two examples of visualization of token labelling on video data. For simiplicity, we omit several frames and thus each example only shows 5 frames with uniform sampling rate. For each frame, each value p(i,j) on the left hand side means the pseudo label (index) at each patch of the last stage provided by the annotation model.

  • Visualization example 1 (Correct label: pushing cart, index: 262).
  • Visualization example 2 (Correct label: dribbling basketball, index: 99).

              

Apex (optional):

We use apex for mixed precision training by default. To install apex, use our provided docker or run:

git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

If you would like to disable apex, comment out the following code block in the configuration files:

# do not use mmcv version fp16
fp16 = None
optimizer_config = dict(
    type="DistOptimizerHook",
    update_interval=1,
    grad_clip=None,
    coalesce=True,
    bucket_size_mb=-1,
    use_fp16=True,
)

Citation

If you find our work useful in your research, please cite:

@article{liang2021dualformer,
         title={DualFormer: Local-Global Stratified Transformer for Efficient Video Recognition}, 
         author={Yuxuan Liang and Pan Zhou and Roger Zimmermann and Shuicheng Yan},
         year={2021},
         journal={arXiv preprint arXiv:2112.04674},
}

Acknowledgement

We would like to thank the authors of the following helpful codebases:

Please kindly consider star these related packages as well. Thank you much for your attention.

Owner
Sea AI Lab
Sea AI Lab
Public scripts, services, and configuration for running a smart home K3S network cluster

makerhouse_network Public scripts, services, and configuration for running MakerHouse's home network. This network supports: TODO features here For mo

Scott Martin 1 Jan 15, 2022
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023
Scalable Optical Flow-based Image Montaging and Alignment

SOFIMA SOFIMA (Scalable Optical Flow-based Image Montaging and Alignment) is a tool for stitching, aligning and warping large 2d, 3d and 4d microscopy

Google Research 16 Dec 21, 2022
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
Code of the paper "Multi-Task Meta-Learning Modification with Stochastic Approximation".

Multi-Task Meta-Learning Modification with Stochastic Approximation This repository contains the code for the paper "Multi-Task Meta-Learning Modifica

Andrew 3 Jan 05, 2022
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans

Reactive Systems Group 1 Apr 18, 2022
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs

Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs ArXiv Abstract Convolutional Neural Networks (CNNs) have become the de f

Philipp Benz 12 Oct 24, 2022
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 51 Jan 06, 2023
Huawei Hackathon 2021 - Sweden (Stockholm)

huawei-hackathon-2021 Contributors DrakeAxelrod Challenge Requirements: python=3.8.10 Standard libraries (no importing) Important factors: Data depend

Drake Axelrod 32 Nov 08, 2022
Symbolic Music Generation with Diffusion Models

Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation

Magenta 119 Jan 07, 2023
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

lokaman chendekar 35 Nov 25, 2022
A framework for multi-step probabilistic time-series/demand forecasting models

JointDemandForecasting.py A framework for multi-step probabilistic time-series/demand forecasting models File stucture JointDemandForecasting contains

Stanford Intelligent Systems Laboratory 3 Sep 28, 2022
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
g9.py - Torch interactive graphics

g9.py - Torch interactive graphics A Torch toy in the browser. Demo at https://srush.github.io/g9py/ This is a shameless copy of g9.js, written in Pyt

Sasha Rush 13 Nov 16, 2022
Computer Vision and Pattern Recognition, NUS CS4243, 2022

CS4243_2022 Computer Vision and Pattern Recognition, NUS CS4243, 2022 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : h

Xavier Bresson 142 Dec 15, 2022
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集

English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli

633 Jan 04, 2023
This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight)

Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization This codebase is the official implementation of Test-Time Classifier A

47 Dec 28, 2022
Realtime segmentation with ENet, the fast and accurate segmentation net.

Enet This is a realtime segmentation net with almost 22 fps on GTX1080 ti, and the model size is very small with only 28M. This repo contains the infe

JinTian 14 Aug 30, 2022