[CVPR2022] This repository contains code for the paper "Nested Collaborative Learning for Long-Tailed Visual Recognition", published at CVPR 2022

Related tags

Data AnalysisNCL
Overview

Nested Collaborative Learning for Long-Tailed Visual Recognition

This repository is the official PyTorch implementation of the paper in CVPR 2022:

Nested Collaborative Learning for Long-Tailed Visual Recognition
Jun Li, Zichang Tan, Jun Wan, Zhen Lei, Guodong Guo
[PDF]  

 

Main requirements

torch >= 1.7.1 #This is the version I am using, other versions may be accteptable, if there is any problem, go to https://pytorch.org/get-started/previous-versions/ to get right version(espicially CUDA) for your machine.
tensorboardX >= 2.1 #Visualization of the training process.
tensorflow >= 1.14.0 #convert long-tailed cifar datasets from tfrecords to jpgs.
Python 3.6 #This is the version I am using, other versions(python 3.x) may be accteptable.

Detailed requirement

pip install -r requirements.txt

Prepare datasets

This part is mainly based on https://github.com/zhangyongshun/BagofTricks-LT

We provide three datasets in this repo: long-tailed CIFAR (CIFAR-LT), long-tailed ImageNet (ImageNet-LT), iNaturalist 2018 (iNat18) and Places_LT.

The detailed information of these datasets are shown as follows:

Datasets CIFAR-10-LT CIFAR-100-LT ImageNet-LT iNat18 Places_LT
Imbalance factor
100 50 100 50
Training images 12,406 13,996 10,847 12,608 11,5846 437,513 62,500
Classes 50 50 100 100 1,000 8,142 365
Max images 5,000 5,000 500 500 1,280 1,000 4,980
Min images 50 100 5 10 5 2 5
Imbalance factor 100 50 100 50 256 500 996
-"Max images" and "Min images" represents the number of training images in the largest and smallest classes, respectively.

-"CIFAR-10-LT-100" means the long-tailed CIFAR-10 dataset with the imbalance factor beta = 100.

-"Imbalance factor" is defined as: beta = Max images / Min images.

  • Data format

The annotation of a dataset is a dict consisting of two field: annotations and num_classes. The field annotations is a list of dict with image_id, fpath, im_height, im_width and category_id.

Here is an example.

{
    'annotations': [
                    {
                        'image_id': 1,
                        'fpath': '/data/iNat18/images/train_val2018/Plantae/7477/3b60c9486db1d2ee875f11a669fbde4a.jpg',
                        'im_height': 600,
                        'im_width': 800,
                        'category_id': 7477
                    },
                    ...
                   ]
    'num_classes': 8142
}
  • CIFAR-LT

    Cui et al., CVPR 2019 firstly proposed the CIFAR-LT. They provided the download link of CIFAR-LT, and also the codes to generate the data, which are in TensorFlow.

    You can follow the steps below to get this version of CIFAR-LT:

    1. Download the Cui's CIFAR-LT in GoogleDrive or Baidu Netdisk (password: 5rsq). Suppose you download the data and unzip them at path /downloaded/data/.
    2. Run tools/convert_from_tfrecords, and the converted CIFAR-LT and corresponding jsons will be generated at /downloaded/converted/.
    # Convert from the original format of CIFAR-LT
    python tools/convert_from_tfrecords.py  --input_path /downloaded/data/ --output_path /downloaded/converted/
  • ImageNet-LT

    You can use the following steps to convert from the original images of ImageNet-LT.

    1. Download the original ILSVRC-2012. Suppose you have downloaded and reorgnized them at path /downloaded/ImageNet/, which should contain two sub-directories: /downloaded/ImageNet/train and /downloaded/ImageNet/val.
    2. Directly replace the data root directory in the file dataset_json/ImageNet_LT_train.json, dataset_json/ImageNet_LT_val.json,You can handle this with any editor, or use the following command.
    # replace data root
    python tools/replace_path.py --json_file dataset_json/ImageNet_LT_train.json --find_root /media/ssd1/lijun/ImageNet_LT --replaces_to /downloaded/ImageNet
    
    python tools/replace_path.py --json_file dataset_json/ImageNet_LT_val.json --find_root /media/ssd1/lijun/ImageNet_LT --replaces_to /downloaded/ImageNet
    
  • iNat18

    You can use the following steps to convert from the original format of iNaturalist 2018.

    1. The images and annotations should be downloaded at iNaturalist 2018 firstly. Suppose you have downloaded them at path /downloaded/iNat18/.
    2. Directly replace the data root directory in the file dataset_json/iNat18_train.json, dataset_json/iNat18_val.json,You can handle this with any editor, or use the following command.
    # replace data root
    python tools/replace_path.py --json_file dataset_json/iNat18_train.json --find_root /media/ssd1/lijun/inaturalist2018/train_val2018 --replaces_to /downloaded/iNat18
    
    python tools/replace_path.py --json_file dataset_json/iNat18_val.json --find_root /media/ssd1/lijun/inaturalist2018/train_val2018 --replaces_to /downloaded/iNat18
    
  • Places_LT

    You can use the following steps to convert from the original format of Places365-Standard.

    1. The images and annotations should be downloaded at Places365-Standard firstly. Suppose you have downloaded them at path /downloaded/Places365/.
    2. Directly replace the data root directory in the file dataset_json/Places_LT_train.json, dataset_json/Places_LT_val.json,You can handle this with any editor, or use the following command.
    # replace data root
    python tools/replace_path.py --json_file dataset_json/Places_LT_train.json --find_root /media/ssd1/lijun/data/places365_standard --replaces_to /downloaded/Places365
    
    python tools/replace_path.py --json_file dataset_json/Places_LT_val.json --find_root /media/ssd1/lijun/data/places365_standard --replaces_to /downloaded/Places365
    

Usage

First, prepare the dataset and modify the relevant paths in config/CIFAR100/cifar100_im100_NCL.yaml

Parallel training with DataParallel

1, Train
# Train long-tailed CIFAR-100 with imbalanced ratio of 100. 
# `GPUs` are the GPUs you want to use, such as '0' or`0,1,2,3`.
bash data_parallel_train.sh /home/lijun/papers/NCL/config/CIFAR/CIFAR100/cifar100_im100_NCL.yaml 0

Distributed training with DistributedDataParallel

Note that if you choose to train with DistributedDataParallel, the BATCH_SIZE in .yaml indicates the number on each GPU!

Default training batch-size: CIFAR: 64; ImageNet_LT: 256; Places_LT: 256; iNat18: 512.

e.g. if you want to train NCL with batch-size=512 on 8 GPUS, you should set the BATCH_SIZE in .yaml to 64.

1, Change the NCCL_SOCKET_IFNAME in run_with_distributed_parallel.sh to [your own socket name]. 
export NCCL_SOCKET_IFNAME = [your own socket name]

2, Train
# Train inaturalist2018. 
# `GPUs` are the GPUs you want to use, such as `0,1,2,3,4,5,6,7`.
# `NUM_GPUs` are the number of GPUs you want to use. If you set `GPUs` to `0,1,2,3,4,5,6,7`, then `NUM_GPUs` should be `8`.
bash distributed_data_parallel_train.sh config/iNat18/inat18_NCL.yaml 8 0,1,2,3,4,5,6,7

Citation

If you find our work inspiring or use our codebase in your research, please consider giving a star and a citation.

@inproceedings{li2022nested,
  title={Nested Collaborative Learning for Long-Tailed Visual Recognition},
  author={Li, Jun and Tan, Zichang and Wan, Jun and Lei, Zhen and Guo, Guodong},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2022}
}

Acknowledgements

This is a project based on Bag of tricks.

The data augmentations in dataset are based on PaCo

The MOCO in constrstive learning is based on MOCO

Owner
Jun Li
Jun Li
A crude Hy handle on Pandas library

Quickstart Hyenas is a curde Hy handle written on top of Pandas API to allow for more elegant access to data-scientist's powerhouse that is Pandas. In

Peter Výboch 4 Sep 05, 2022
Autopsy Module to analyze Registry Hives based on bookmarks provided by EricZimmerman for his tool RegistryExplorer

Autopsy Module to analyze Registry Hives based on bookmarks provided by EricZimmerman for his tool RegistryExplorer

Mohammed Hassan 13 Mar 31, 2022
First steps with Python in Life Sciences

First steps with Python in Life Sciences This course material is part of the "First Steps with Python in Life Science" three-day course of SIB-trainin

SIB Swiss Institute of Bioinformatics 22 Jan 08, 2023
Learn machine learning the fun way, with Oracle and RedBull Racing

Red Bull Racing Analytics Hands-On Labs Introduction Are you interested in learning machine learning (ML)? How about doing this in the context of the

Oracle DevRel 55 Oct 24, 2022
Lale is a Python library for semi-automated data science.

Lale is a Python library for semi-automated data science. Lale makes it easy to automatically select algorithms and tune hyperparameters of pipelines that are compatible with scikit-learn, in a type-

International Business Machines 293 Dec 29, 2022
This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks

This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks

Donald F. Ferguson 4 Mar 06, 2022
Statistical & Probabilistic Analysis of Store Sales, University Survey, & Manufacturing data

Statistical_Modelling Statistical & Probabilistic Analysis of Store Sales, University Survey, & Manufacturing data Statistical Methods for Decision Ma

Avnika Mehta 1 Jan 27, 2022
Data analysis and visualisation projects from a range of individual projects and applications

Python-Data-Analysis-and-Visualisation-Projects Data analysis and visualisation projects from a range of individual projects and applications. Python

Tom Ritman-Meer 1 Jan 25, 2022
Udacity-api-reporting-pipeline - Udacity api reporting pipeline

udacity-api-reporting-pipeline In this exercise, you'll use portions of each of

Fabio Barbazza 1 Feb 15, 2022
An easy-to-use feature store

A feature store is a data storage system for data science and machine-learning. It can store raw data and also transformed features, which can be fed straight into an ML model or training script.

ByteHub AI 48 Dec 09, 2022
ICLR 2022 Paper submission trend analysis

Visualize ICLR 2022 OpenReview Data

Jintang Li 75 Dec 06, 2022
Time ranges with python

timeranges Time ranges. Read the Docs Installation pip timeranges is available on pip: pip install timeranges GitHub You can also install the latest v

Micael Jarniac 2 Sep 01, 2022
Single machine, multiple cards training; mix-precision training; DALI data loader.

Template Script Category Description Category script comparison script train.py, loader.py for single-machine-multiple-cards training train_DP.py, tra

2 Jun 27, 2022
Pizza Orders Data Pipeline Usecase Solved by SQL, Sqoop, HDFS, Hive, Airflow.

PizzaOrders_DataPipeline There is a Tony who is owning a New Pizza shop. He knew that pizza alone was not going to help him get seed funding to expand

Melwin Varghese P 4 Jun 05, 2022
Containerized Demo of Apache Spark MLlib on a Data Lakehouse (2022)

Spark-DeltaLake-Demo Reliable, Scalable Machine Learning (2022) This project was completed in an attempt to become better acquainted with the latest b

8 Mar 21, 2022
Open source platform for Data Science Management automation

Hydrosphere examples This repo contains demo scenarios and pre-trained models to show Hydrosphere capabilities. Data and artifacts management Some mod

hydrosphere.io 6 Aug 10, 2021
CleanX is an open source python library for exploring, cleaning and augmenting large datasets of X-rays, or certain other types of radiological images.

cleanX CleanX is an open source python library for exploring, cleaning and augmenting large datasets of X-rays, or certain other types of radiological

Candace Makeda Moore, MD 20 Jan 05, 2023
EOD Historical Data Python Library (Unofficial)

EOD Historical Data Python Library (Unofficial) https://eodhistoricaldata.com Installation python3 -m pip install eodhistoricaldata Note Demo API key

Michael Whittle 20 Dec 22, 2022
peptides.py is a pure-Python package to compute common descriptors for protein sequences

peptides.py Physicochemical properties and indices for amino-acid sequences. 🗺️ Overview peptides.py is a pure-Python package to compute common descr

Martin Larralde 32 Dec 31, 2022
Additional tools for particle accelerator data analysis and machine information

PyLHC Tools This package is a collection of useful scripts and tools for the Optics Measurements and Corrections group (OMC) at CERN. Documentation Au

PyLHC 3 Apr 13, 2022