[CVPR2022] This repository contains code for the paper "Nested Collaborative Learning for Long-Tailed Visual Recognition", published at CVPR 2022

Related tags

Data AnalysisNCL
Overview

Nested Collaborative Learning for Long-Tailed Visual Recognition

This repository is the official PyTorch implementation of the paper in CVPR 2022:

Nested Collaborative Learning for Long-Tailed Visual Recognition
Jun Li, Zichang Tan, Jun Wan, Zhen Lei, Guodong Guo
[PDF]  

 

Main requirements

torch >= 1.7.1 #This is the version I am using, other versions may be accteptable, if there is any problem, go to https://pytorch.org/get-started/previous-versions/ to get right version(espicially CUDA) for your machine.
tensorboardX >= 2.1 #Visualization of the training process.
tensorflow >= 1.14.0 #convert long-tailed cifar datasets from tfrecords to jpgs.
Python 3.6 #This is the version I am using, other versions(python 3.x) may be accteptable.

Detailed requirement

pip install -r requirements.txt

Prepare datasets

This part is mainly based on https://github.com/zhangyongshun/BagofTricks-LT

We provide three datasets in this repo: long-tailed CIFAR (CIFAR-LT), long-tailed ImageNet (ImageNet-LT), iNaturalist 2018 (iNat18) and Places_LT.

The detailed information of these datasets are shown as follows:

Datasets CIFAR-10-LT CIFAR-100-LT ImageNet-LT iNat18 Places_LT
Imbalance factor
100 50 100 50
Training images 12,406 13,996 10,847 12,608 11,5846 437,513 62,500
Classes 50 50 100 100 1,000 8,142 365
Max images 5,000 5,000 500 500 1,280 1,000 4,980
Min images 50 100 5 10 5 2 5
Imbalance factor 100 50 100 50 256 500 996
-"Max images" and "Min images" represents the number of training images in the largest and smallest classes, respectively.

-"CIFAR-10-LT-100" means the long-tailed CIFAR-10 dataset with the imbalance factor beta = 100.

-"Imbalance factor" is defined as: beta = Max images / Min images.

  • Data format

The annotation of a dataset is a dict consisting of two field: annotations and num_classes. The field annotations is a list of dict with image_id, fpath, im_height, im_width and category_id.

Here is an example.

{
    'annotations': [
                    {
                        'image_id': 1,
                        'fpath': '/data/iNat18/images/train_val2018/Plantae/7477/3b60c9486db1d2ee875f11a669fbde4a.jpg',
                        'im_height': 600,
                        'im_width': 800,
                        'category_id': 7477
                    },
                    ...
                   ]
    'num_classes': 8142
}
  • CIFAR-LT

    Cui et al., CVPR 2019 firstly proposed the CIFAR-LT. They provided the download link of CIFAR-LT, and also the codes to generate the data, which are in TensorFlow.

    You can follow the steps below to get this version of CIFAR-LT:

    1. Download the Cui's CIFAR-LT in GoogleDrive or Baidu Netdisk (password: 5rsq). Suppose you download the data and unzip them at path /downloaded/data/.
    2. Run tools/convert_from_tfrecords, and the converted CIFAR-LT and corresponding jsons will be generated at /downloaded/converted/.
    # Convert from the original format of CIFAR-LT
    python tools/convert_from_tfrecords.py  --input_path /downloaded/data/ --output_path /downloaded/converted/
  • ImageNet-LT

    You can use the following steps to convert from the original images of ImageNet-LT.

    1. Download the original ILSVRC-2012. Suppose you have downloaded and reorgnized them at path /downloaded/ImageNet/, which should contain two sub-directories: /downloaded/ImageNet/train and /downloaded/ImageNet/val.
    2. Directly replace the data root directory in the file dataset_json/ImageNet_LT_train.json, dataset_json/ImageNet_LT_val.json,You can handle this with any editor, or use the following command.
    # replace data root
    python tools/replace_path.py --json_file dataset_json/ImageNet_LT_train.json --find_root /media/ssd1/lijun/ImageNet_LT --replaces_to /downloaded/ImageNet
    
    python tools/replace_path.py --json_file dataset_json/ImageNet_LT_val.json --find_root /media/ssd1/lijun/ImageNet_LT --replaces_to /downloaded/ImageNet
    
  • iNat18

    You can use the following steps to convert from the original format of iNaturalist 2018.

    1. The images and annotations should be downloaded at iNaturalist 2018 firstly. Suppose you have downloaded them at path /downloaded/iNat18/.
    2. Directly replace the data root directory in the file dataset_json/iNat18_train.json, dataset_json/iNat18_val.json,You can handle this with any editor, or use the following command.
    # replace data root
    python tools/replace_path.py --json_file dataset_json/iNat18_train.json --find_root /media/ssd1/lijun/inaturalist2018/train_val2018 --replaces_to /downloaded/iNat18
    
    python tools/replace_path.py --json_file dataset_json/iNat18_val.json --find_root /media/ssd1/lijun/inaturalist2018/train_val2018 --replaces_to /downloaded/iNat18
    
  • Places_LT

    You can use the following steps to convert from the original format of Places365-Standard.

    1. The images and annotations should be downloaded at Places365-Standard firstly. Suppose you have downloaded them at path /downloaded/Places365/.
    2. Directly replace the data root directory in the file dataset_json/Places_LT_train.json, dataset_json/Places_LT_val.json,You can handle this with any editor, or use the following command.
    # replace data root
    python tools/replace_path.py --json_file dataset_json/Places_LT_train.json --find_root /media/ssd1/lijun/data/places365_standard --replaces_to /downloaded/Places365
    
    python tools/replace_path.py --json_file dataset_json/Places_LT_val.json --find_root /media/ssd1/lijun/data/places365_standard --replaces_to /downloaded/Places365
    

Usage

First, prepare the dataset and modify the relevant paths in config/CIFAR100/cifar100_im100_NCL.yaml

Parallel training with DataParallel

1, Train
# Train long-tailed CIFAR-100 with imbalanced ratio of 100. 
# `GPUs` are the GPUs you want to use, such as '0' or`0,1,2,3`.
bash data_parallel_train.sh /home/lijun/papers/NCL/config/CIFAR/CIFAR100/cifar100_im100_NCL.yaml 0

Distributed training with DistributedDataParallel

Note that if you choose to train with DistributedDataParallel, the BATCH_SIZE in .yaml indicates the number on each GPU!

Default training batch-size: CIFAR: 64; ImageNet_LT: 256; Places_LT: 256; iNat18: 512.

e.g. if you want to train NCL with batch-size=512 on 8 GPUS, you should set the BATCH_SIZE in .yaml to 64.

1, Change the NCCL_SOCKET_IFNAME in run_with_distributed_parallel.sh to [your own socket name]. 
export NCCL_SOCKET_IFNAME = [your own socket name]

2, Train
# Train inaturalist2018. 
# `GPUs` are the GPUs you want to use, such as `0,1,2,3,4,5,6,7`.
# `NUM_GPUs` are the number of GPUs you want to use. If you set `GPUs` to `0,1,2,3,4,5,6,7`, then `NUM_GPUs` should be `8`.
bash distributed_data_parallel_train.sh config/iNat18/inat18_NCL.yaml 8 0,1,2,3,4,5,6,7

Citation

If you find our work inspiring or use our codebase in your research, please consider giving a star and a citation.

@inproceedings{li2022nested,
  title={Nested Collaborative Learning for Long-Tailed Visual Recognition},
  author={Li, Jun and Tan, Zichang and Wan, Jun and Lei, Zhen and Guo, Guodong},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2022}
}

Acknowledgements

This is a project based on Bag of tricks.

The data augmentations in dataset are based on PaCo

The MOCO in constrstive learning is based on MOCO

Owner
Jun Li
Jun Li
Python package for analyzing behavioral data for Brain Observatory: Visual Behavior

Allen Institute Visual Behavior Analysis package This repository contains code for analyzing behavioral data from the Allen Brain Observatory: Visual

Allen Institute 16 Nov 04, 2022
Parses data out of your Google Takeout (History, Activity, Youtube, Locations, etc...)

google_takeout_parser parses both the Historical HTML and new JSON format for Google Takeouts caches individual takeout results behind cachew merge mu

Sean Breckenridge 27 Dec 28, 2022
Using Python to scrape some basic player information from www.premierleague.com and then use Pandas to analyse said data.

PremiershipPlayerAnalysis Using Python to scrape some basic player information from www.premierleague.com and then use Pandas to analyse said data. No

5 Sep 06, 2021
A program that uses an API and a AI model to get info of sotcks

Stock-Market-AI-Analysis I dont mind anyone using this code but please give me credit A program that uses an API and a AI model to get info of stocks

1 Dec 17, 2021
InDels analysis of CRISPR lines by NGS amplicon sequencing technology for a multicopy gene family.

CRISPRanalysis InDels analysis of CRISPR lines by NGS amplicon sequencing technology for a multicopy gene family. In this work, we present a workflow

2 Jan 31, 2022
Working Time Statistics of working hours and working conditions by industry and company

Working Time Statistics of working hours and working conditions by industry and company

Feng Ruohang 88 Nov 04, 2022
wikirepo is a Python package that provides a framework to easily source and leverage standardized Wikidata information

Python based Wikidata framework for easy dataframe extraction wikirepo is a Python package that provides a framework to easily source and leverage sta

Andrew Tavis McAllister 35 Jan 04, 2023
Elementary is an open-source data reliability framework for modern data teams. The first module of the framework is data lineage.

Data lineage made simple, reliable, and automated. Effortlessly track the flow of data, understand dependencies and analyze impact. Features Visualiza

898 Jan 09, 2023
Sensitivity Analysis Library in Python (Numpy). Contains Sobol, Morris, Fractional Factorial and FAST methods.

Sensitivity Analysis Library (SALib) Python implementations of commonly used sensitivity analysis methods. Useful in systems modeling to calculate the

SALib 663 Jan 05, 2023
Picka: A Python module for data generation and randomization.

Picka: A Python module for data generation and randomization. Author: Anthony Long Version: 1.0.1 - Fixed the broken image stuff. Whoops What is Picka

Anthony 108 Nov 30, 2021
fds is a tool for Data Scientists made by DAGsHub to version control data and code at once.

Fast Data Science, AKA fds, is a CLI for Data Scientists to version control data and code at once, by conveniently wrapping git and dvc

DAGsHub 359 Dec 22, 2022
This tool parses log data and allows to define analysis pipelines for anomaly detection.

logdata-anomaly-miner This tool parses log data and allows to define analysis pipelines for anomaly detection. It was designed to run the analysis wit

AECID 32 Nov 27, 2022
For making Tagtog annotation into csv dataset

tagtog_relation_extraction for making Tagtog annotation into csv dataset How to Use On Tagtog 1. Go to Project Downloads 2. Download all documents,

hyeong 4 Dec 28, 2021
Maximum Covariance Analysis in Python

xMCA | Maximum Covariance Analysis in Python The aim of this package is to provide a flexible tool for the climate science community to perform Maximu

Niclas Rieger 39 Jan 03, 2023
First steps with Python in Life Sciences

First steps with Python in Life Sciences This course material is part of the "First Steps with Python in Life Science" three-day course of SIB-trainin

SIB Swiss Institute of Bioinformatics 22 Jan 08, 2023
Example Of Splunk Search Query With Python And Splunk Python SDK

SSQAuto (Splunk Search Query Automation) Example Of Splunk Search Query With Python And Splunk Python SDK installation: ➜ ~ git clone https://github.c

AmirHoseinTangsiriNET 1 Nov 14, 2021
Building house price data pipelines with Apache Beam and Spark on GCP

This project contains the process from building a web crawler to extract the raw data of house price to create ETL pipelines using Google Could Platform services.

1 Nov 22, 2021
Finding project directories in Python (data science) projects, just like there R rprojroot and here packages

Find relative paths from a project root directory Finding project directories in Python (data science) projects, just like there R here and rprojroot

Daniel Chen 102 Nov 16, 2022