A collection of robust and fast processing tools for parsing and analyzing web archive data.

Overview

ChatNoir Resiliparse

Build Wheels Codecov Documentation Status

A collection of robust and fast processing tools for parsing and analyzing web archive data.

Resiliparse is part of the ChatNoir web analytics toolkit. If you use ChatNoir or any of its tools for a publication, you can make us happy by citing our ECIR demo paper:

@InProceedings{bevendorff:2018,
  address =             {Berlin Heidelberg New York},
  author =              {Janek Bevendorff and Benno Stein and Matthias Hagen and Martin Potthast},
  booktitle =           {Advances in Information Retrieval. 40th European Conference on IR Research (ECIR 2018)},
  editor =              {Leif Azzopardi and Allan Hanbury and Gabriella Pasi and Benjamin Piwowarski},
  ids =                 {potthast:2018c,stein:2018c},
  month =               mar,
  publisher =           {Springer},
  series =              {Lecture Notes in Computer Science},
  site =                {Grenoble, France},
  title =               {{Elastic ChatNoir: Search Engine for the ClueWeb and the Common Crawl}},
  year =                2018
}

Usage Instructions

For detailed information about the build process, dependencies, APIs, or usage instructions, please read the Resiliparse Documentation

Resiliparse Module Summary

The Resiliparse collection encompasses the following two modules at the moment:

1. Resiliparse

The Resiliparse main module with the following subcomponents:

Parsing Utilities

The Resiliparse Parsing Utilities are the largest submodule and provide an extensive (and growing) collection of efficient tools for dealing with encodings and raw protocol payloads, parsing HTML web pages, and preparing them for further processing by extracting structural or semantic information.

Main documentation: Resiliparse Parsing Utilities

Process Guards

The Resiliparse Process Guard module is a set of decorators and context managers for guarding a processing context to stay within pre-defined limits for execution time and memory usage. Process Guards help to ensure the (partially) successful completion of batch processing jobs in which individual tasks may time out or use abnormal amounts of memory, but in which the success of the whole job is not threatened by (a few) individual failures. A guarded processing context will be interrupted upon exceeding its resource limits so that the task can be skipped or rescheduled.

Main documentation: Resiliparse Process Guards

Itertools

Resiliparse Itertools are a collection of convenient and robust helper functions for iterating over data from unreliable sources using other tools from the Resiliparse toolkit.

Main documentation: Resiliparse Itertools

2. FastWARC

FastWARC is a high-performance WARC parsing library for Python written in C++/Cython. The API is inspired in large parts by WARCIO, but does not aim at being a drop-in replacement. FastWARC supports compressed and uncompressed WARC/1.0 and WARC/1.1 streams. Supported compression algorithms are GZip and LZ4.

Main documentation: FastWARC and FastWARC CLI

Installation

The main Resiliparse package can be installed from PyPi as follows:

pip install resiliparse

FastWARC is being distributed as its own package and can be installed like so:

pip install fastwarc

For optimal performance, however, it is recommended to build FastWARC from sources instead of relying on the pre-built binaries. See below for more information.

Building From Source

To build Resiliparse or FastWARC from sources, you need to install all required build-time dependencies first. On Ubuntu, this is done as follows:

# Add Lexbor repository
curl -L https://lexbor.com/keys/lexbor_signing.key | sudo apt-key add -
echo "deb https://packages.lexbor.com/ubuntu/ $(lsb_release -sc) liblexbor" | \
    sudo tee /etc/apt/sources.list.d/lexbor.list

# Install build dependencies
sudo apt update
sudo apt install build-essential python3-dev zlib1g-dev \
    liblz4-dev libuchardet-dev liblexbor-dev

Then, to build the actual packages, run:

# Optional: Create a fresh venv first
python3 -m venv venv && source venv/bin/activate

# Build and install Resiliparse
pip install -e resiliparse

# Build and install FastWARC
pip install -e fastwarc

Instead of building the packages from this repository, you can also build them from the PyPi source packages:

# Build Resiliparse from PyPi
pip install --no-binary resiliparse resiliparse

# Build FastWARC from PyPi
pip install --no-binary fastwarc fastwarc
Owner
ChatNoir
ChatNoir Research Web Search Engine
ChatNoir
Geospatial data-science analysis on reasons behind delay in Grab ride-share services

Grab x Pulis Detailed analysis done to investigate possible reasons for delay in Grab services for NUS Data Analytics Competition 2022, to be found in

Keng Hwee 6 Jun 07, 2022
Import, connect and transform data into Excel

xlwings_query Import, connect and transform data into Excel. Description The concept is to apply data transformations to a main query object. When the

George Karakostas 1 Jan 19, 2022
pipeline for migrating lichess data into postgresql

How Long Does It Take Ordinary People To "Get Good" At Chess? TL;DR: According to 5.5 years of data from 2.3 million players and 450 million games, mo

Joseph Wong 182 Nov 11, 2022
The lastest all in one bombing tool coded in python uses tbomb api

BaapG-Attack is a python3 based script which is officially made for linux based distro . It is inbuit mass bomber with sms, mail, calls and many more bombing

59 Dec 25, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is a state-of-the-art platform for statistical modeling and high-

Stan 229 Dec 29, 2022
My first Python project is a simple Mad Libs program.

Python CLI Mad Libs Game My first Python project is a simple Mad Libs program. Mad Libs is a phrasal template word game created by Leonard Stern and R

Carson Johnson 1 Dec 10, 2021
Big Data & Cloud Computing for Oceanography

DS2 Class 2022, Big Data & Cloud Computing for Oceanography Home of the 2022 ISblue Big Data & Cloud Computing for Oceanography class (IMT-A, ENSTA, I

Ocean's Big Data Mining 5 Mar 19, 2022
Snakemake workflow for converting FASTQ files to self-contained CRAM files with maximum lossless compression.

Snakemake workflow: name A Snakemake workflow for description Usage The usage of this workflow is described in the Snakemake Workflow Catalog. If

Algorithms for reproducible bioinformatics (Koesterlab) 1 Dec 16, 2021
Display the behaviour of a realtime program with a scope or logic analyser.

1. A monitor for realtime MicroPython code This library provides a means of examining the behaviour of a running system. It was initially designed to

Peter Hinch 17 Dec 05, 2022
Pandas on AWS - Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretManager, PostgreSQL, MySQL, SQLServer and S3 (Parquet, CSV, JSON and EXCEL).

AWS Data Wrangler Pandas on AWS Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretMana

Amazon Web Services - Labs 3.3k Jan 04, 2023
Candlestick Pattern Recognition with Python and TA-Lib

Candlestick-Pattern-Recognition-with-Python-and-TA-Lib Goal Look at the S&P500 to try and get a better understanding of these candlestick patterns and

Ganesh Jainarain 11 Oct 07, 2022
Python tools for querying and manipulating BIDS datasets.

PyBIDS is a Python library to centralize interactions with datasets conforming BIDS (Brain Imaging Data Structure) format.

Brain Imaging Data Structure 180 Dec 18, 2022
A model checker for verifying properties in epistemic models

Epistemic Model Checker This is a model checker for verifying properties in epistemic models. The goal of the model checker is to check for Pluralisti

Thomas Träff 2 Dec 22, 2021
A Python package for modular causal inference analysis and model evaluations

Causal Inference 360 A Python package for inferring causal effects from observational data. Description Causal inference analysis enables estimating t

International Business Machines 506 Dec 19, 2022
A distributed block-based data storage and compute engine

Nebula is an extremely-fast end-to-end interactive big data analytics solution. Nebula is designed as a high-performance columnar data storage and tabular OLAP engine.

Columns AI 131 Dec 26, 2022
Calculate multilateral price indices in Python (with Pandas and PySpark).

IndexNumCalc Calculate multilateral price indices using the GEKS-T (CCDI), Time Product Dummy (TPD), Time Dummy Hedonic (TDH), Geary-Khamis (GK) metho

Dr. Usman Kayani 3 Apr 27, 2022
Pyspark project that able to do joins on the spark data frames.

SPARK JOINS This project is to perform inner, all outer joins and semi joins. create_df.py: load_data.py : helps to put data into Spark data frames. d

Joshua 1 Dec 14, 2021
🧪 Panel-Chemistry - exploratory data analysis and build powerful data and viz tools within the domain of Chemistry using Python and HoloViz Panel.

🧪📈 🐍. The purpose of the panel-chemistry project is to make it really easy for you to do DATA ANALYSIS and build powerful DATA AND VIZ APPLICATIONS within the domain of Chemistry using using Python a

Marc Skov Madsen 97 Dec 08, 2022
Automated Exploration Data Analysis on a financial dataset

Automated EDA on financial dataset Just a simple way to get automated Exploration Data Analysis from financial dataset (OHLCV) using Streamlit and ta.

Darío López Padial 28 Nov 27, 2022
Provide a market analysis (R)

market-study Provide a market analysis (R) - FRENCH Produisez une étude de marché Prérequis Pour effectuer ce projet, vous devrez maîtriser la manipul

1 Feb 13, 2022