Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Related tags

Deep LearningURST
Overview

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Official PyTorch implementation for our URST (Ultra-Resolution Style Transfer) framework.

URST is a versatile framework for ultra-high resolution style transfer under limited memory resources, which can be easily plugged in most existing neural style transfer methods.

With the growth of the input resolution, the memory cost of our URST hardly increases. Theoretically, it supports style transfer of arbitrary high-resolution images.

One ultra-high resolution stylized result of 12000 x 8000 pixels (i.e., 96 megapixels).

This repository is developed based on six representative style transfer methods, which are Johnson et al., MSG-Net, AdaIN, WCT, LinearWCT, and Wang et al. (Collaborative Distillation).

For details see Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization.

If you use this code for a paper please cite:

@misc{chen2021towards,
      title={Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization}, 
      author={Zhe Chen and Wenhai Wang and Enze Xie and Tong Lu and Ping Luo},
      year={2021},
      eprint={2103.11784},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Environment

  • python3.6, pillow, tqdm, torchfile, pytorch1.1+ (for inference)

    pip install pillow
    pip install tqdm
    pip install torchfile
    conda install pytorch==1.1.0 torchvision==0.3.0 -c pytorch
  • tensorboardX (for training)

    pip install tensorboardX

Then, clone the repository locally:

git clone https://github.com/czczup/URST.git

Test (Ultra-high Resolution Style Transfer)

Step 1: Prepare images

  • Content images and style images are placed in examples/.
  • Since the ultra-high resolution images are quite large, we not place them in this repository. Please download them from this google drive.
  • All content images used in this repository are collected from pexels.com.

Step 2: Prepare models

  • Download models from this google drive. Unzip and merge them into this repository.

Step 3: Stylization

First, choose a specific style transfer method and enter the directory.

Then, please run the corresponding script. The stylized results will be saved in output/.

  • For Johnson et al., we use the PyTorch implementation Fast-Neural-Style-Transfer.

    cd Johnson2016Perceptual/
    CUDA_VISIBLE_DEVICES=<gpu_id> python test.py --content <content_path> --model <model_path> --URST
  • For MSG-Net, we use the official PyTorch implementation PyTorch-Multi-Style-Transfer.

    cd Zhang2017MultiStyle/
    CUDA_VISIBLE_DEVICES=<gpu_id> python test.py --content <content_path> --style <style_path> --URST
  • For AdaIN, we use the PyTorch implementation pytorch-AdaIN.

    cd Huang2017AdaIN/
    CUDA_VISIBLE_DEVICES=<gpu_id> python test.py --content <content_path> --style <style_path> --URST
  • For WCT, we use the PyTorch implementation PytorchWCT.

    cd Li2017Universal/
    CUDA_VISIBLE_DEVICES=<gpu_id> python test.py --content <content_path> --style <style_path> --URST
  • For LinearWCT, we use the official PyTorch implementation LinearStyleTransfer.

    cd Li2018Learning/
    CUDA_VISIBLE_DEVICES=<gpu_id> python test.py --content <content_path> --style <style_path> --URST
  • For Wang et al. (Collaborative Distillation), we use the official PyTorch implementation Collaborative-Distillation.

    cd Wang2020Collaborative/PytorchWCT/
    CUDA_VISIBLE_DEVICES=<gpu_id> python test.py --content <content_path> --style <style_path> --URST

Optional options:

  • --patch_size: The maximum size of each patch. The default setting is 1000.
  • --style_size: The size of the style image. The default setting is 1024.
  • --thumb_size: The size of the thumbnail image. The default setting is 1024.
  • --URST: Use our URST framework to process ultra-high resolution images.

Train (Enlarge the Stroke Size)

Step 1: Prepare datasets

Download the MS-COCO 2014 dataset and WikiArt dataset.

  • MS-COCO

    wget http://msvocds.blob.core.windows.net/coco2014/train2014.zip
  • WikiArt

    • Either manually download from kaggle.
    • Or install kaggle-cli and download by running:
    kg download -u <username> -p <password> -c painter-by-numbers -f train.zip

Step 2: Prepare models

As same as the Step 2 in the test phase.

Step 3: Train the decoder with our stroke perceptual loss

  • For AdaIN:

    cd Huang2017AdaIN/
    CUDA_VISIBLE_DEVICES=<gpu_id> python trainv2.py --content_dir <coco_path> --style_dir <wikiart_path>
  • For LinearWCT:

    cd Li2018Learning/
    CUDA_VISIBLE_DEVICES=<gpu_id> python trainv2.py --contentPath <coco_path> --stylePath <wikiart_path>

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Owner
czczup
Knowledge is infinite.
czczup
A module for solving and visualizing Schrödinger equation.

qmsolve This is an attempt at making a solid, easy to use solver, capable of solving and visualize the Schrödinger equation for multiple particles, an

506 Dec 28, 2022
Dynamic wallpaper generator.

Wiki • About • Installation About This project is a dynamic wallpaper changer. It waits untill you turn on the music, downloads album cover if it's po

3 Sep 18, 2021
Tools for the Cleveland State Human Motion and Control Lab

Introduction This is a collection of tools that are helpful for gait analysis. Some are specific to the needs of the Human Motion and Control Lab at C

CSU Human Motion and Control Lab 88 Dec 16, 2022
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
RL agent to play μRTS with Stable-Baselines3

Gym-μRTS with Stable-Baselines3/PyTorch This repo contains an attempt to reproduce Gridnet PPO with invalid action masking algorithm to play μRTS usin

Oleksii Kachaiev 24 Nov 11, 2022
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022
Official code repository for Continual Learning In Environments With Polynomial Mixing Times

Official code for Continual Learning In Environments With Polynomial Mixing Times Continual Learning in Environments with Polynomial Mixing Times This

Sharath Raparthy 1 Dec 19, 2021
It's like Shape Editor in Maya but works with skeletons (transforms).

Skeleposer What is Skeleposer? Briefly, it's like Shape Editor in Maya, but works with transforms and joints. It can be used to make complex facial ri

Alexander Zagoruyko 1 Nov 11, 2022
Official Implementation for HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing

HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing Yuval Alaluf*, Omer Tov*, Ron Mokady, Rinon Gal, Amit H. Bermano *Denotes equ

885 Jan 06, 2023
High dimensional black-box optimizer using Latent Action Monte Carlo Tree Search algorithm

LA-MCTS The code is based of paper Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search. Component LA-MCTS has thr

Meta Research 18 Oct 24, 2022
public repo for ESTER dataset and modeling (EMNLP'21)

Project / Paper Introduction This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350 Here, we provide brief descriptions of

PlusLab 19 Oct 27, 2022
TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 03, 2023
Fully Convolutional DenseNets for semantic segmentation.

Introduction This repo contains the code to train and evaluate FC-DenseNets as described in The One Hundred Layers Tiramisu: Fully Convolutional Dense

485 Nov 26, 2022
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Daniel Hirsch 13 Nov 04, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. Check the unlearning effect

Yige-Li 51 Dec 07, 2022
Learning a mapping from images to psychological similarity spaces with neural networks.

LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s

Lucas Bechberger 8 Dec 12, 2022
Reproduction of Vision Transformer in Tensorflow2. Train from scratch and Finetune.

Vision Transformer(ViT) in Tensorflow2 Tensorflow2 implementation of the Vision Transformer(ViT). This repository is for An image is worth 16x16 words

sungjun lee 42 Dec 27, 2022
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Facebook Research 68 Dec 29, 2022
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022
Pomodoro timer that acknowledges the inexorable, infinite passage of time

Pomodouroboros Most pomodoro trackers assume you're going to start them. But time and tide wait for no one - the great pomodoro of the cosmos is cold

Glyph 66 Dec 13, 2022