PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Related tags

Deep LearningABL
Overview

Anti-Backdoor Learning

PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Python 3.6 Pytorch 1.10 CUDA 10.0 License CC BY-NC

Check the unlearning effect of ABL with 1% isolated backdoor images:

An Example with Pretrained Model

Pretrained backdoored model: gridTrigger WRN-16-1, target label 0, pretrained weights: ./weight/backdoored_model.

Run the following command will show the effect of unlearning:

$ python quick_unlearning_demo.py 

The training logs are shown in below. We can clearly see how effective and efficient of our ABL, with using only 1% (i.e. 500 examples) isolated backdoored images, can successfully decrease the ASR of backdoored WRN-16-1 from 99.98% to near 0% (almost no drop of CA) on CIFAR-10.

Epoch,Test_clean_acc,Test_bad_acc,Test_clean_loss,Test_bad_loss
0,82.77777777777777,99.9888888888889,0.9145596397187975,0.0007119161817762587
Epoch,Test_clean_acc,Test_bad_acc,Test_clean_loss,Test_bad_loss
1,82.97777777777777,47.13333333333333,0.9546798907385932,4.189897534688313
Epoch,Test_clean_acc,Test_bad_acc,Test_clean_loss,Test_bad_loss
2,82.46666666666667,5.766666666666667,1.034722186088562,15.361101960923937
Epoch,Test_clean_acc,Test_bad_acc,Test_clean_loss,Test_bad_loss
3,82.15555555555555,1.5222222222222221,1.0855470676422119,22.175255742390952
Epoch,Test_clean_acc,Test_bad_acc,Test_clean_loss,Test_bad_loss
4,82.0111111111111,0.7111111111111111,1.1183592330084906,26.754894670274524
Epoch,Test_clean_acc,Test_bad_acc,Test_clean_loss,Test_bad_loss
5,81.86666666666666,0.4777777777777778,1.1441074348025853,30.429284422132703

The unlearning model will be saved at the path 'weight/ABL_results/ .tar'

Please carefully read the quick_unlearning_demo.py , then change the default parameters for your experiment.


Prepare Poisoning Data

We have provided a DatasetBD Class in data_loader.py for generating training set of different backdoor attacks.

The use of this code to create a poisoned data is look like this:

from data_loader import *
    if opt.load_fixed_data:
        # load the fixed poisoned data of numpy format, e.g. Dynamic, FC, DFST attacks etc. 
        # Note that the load data type is a pytorch tensor
        poisoned_data = np.load(opt.poisoned_data_path, allow_pickle=True)
        poisoned_data_loader = DataLoader(dataset=poisoned_data,
                                            batch_size=opt.batch_size,
                                            shuffle=True,
                                            )
    else:
        poisoned_data, poisoned_data_loader = get_backdoor_loader(opt)

    test_clean_loader, test_bad_loader = get_test_loader(opt)

However, for the other attacks such as Dynamic, DFTS, FC, etc. It is not easy to contain them into the get_backdoor_loader . So the much elegant way is to create a local fixed poisoning data of these attacks by using the demo code create_poisoned_data.py, and then load this poisoned data by set the opt.loader_fixed_data == True.

We provide a demo of how to create poisoning data of dynamic attack in the create_backdoor_data dictionary.

Please carefully read the create_poisoned_data.py and get_backdoor_loader, then change the parameters for your experiment.

ABL Stage One: Backdoor Isolation

To obtain the 1% isolation data and isolation model, you can easily run command:

$ python backdoor_isolation.py 

After that, you can get a isolation model and then use it to isolate 1% poisoned data of the lowest training loss. The 1% poisoned data will be saved in the path 'isolation_data' and 'weight/isolation_model' respectively.

Please check more details of our experimental settings in section 4 and Appendix A of paper, then change the parameters in config.py for your experiment.

ABL Stage Two: Backdoor Unlearning

With the 1% isolation backdoor set and a isolation model, we can then continue with the later training of unlearning by running the code:

$ python backdoor_unlearning.py 

Note that at this stage, the backdoor has already been learned by the isolation model. In order to further improve clean accuracy of isolation model, we finetuning the model some epochs before backdoor unlearning. If you want directly to see unlearning result, you can select to skip the finetuning of the isolation model by setting argument of opt.finetuning_ascent_model== False .

The final results of unlearning will be saved in the path ABL_results, and logs . Please carefully read the backdoor_unlearning.py and config.py, then change the parameters for your experiment.

Leader-board of training backdoor-free model on Poisoned dataset

  • Note: Here, we create a leader board for anti-backdoor learning that we want to encourage you to submit your results of training a backdoor-free model on a backdoored CIFAR-10 dataset under our defense setting.
  • Defense setting: We assume the backdoor adversary has pre-generated a set of backdoor examples and has successfully injected these examples into the training dataset. We also assume the defender has full control over the training process but has no prior knowledge of the proportion of backdoor examples in the given dataset. The defender’s goal is to train a model on the given dataset (clean or poisoned) that is as good as models trained on purely clean data.
  • We show our ABL results against BadNets in the table bellow as a competition reference, and we welcome you to submit your paper results to complement this table!

Update News: this result is updated in 2021/10/21

# Paper Venue Poisoning data Architecture Attack type ASR (Defense) CA (Defense)
1 ABL NeurIPS 2021 available WRN-16-1 BadNets 3.04 86.11
2
3
4
5
6
7
8

Source of Backdoor Attacks

Attacks

CL: Clean-label backdoor attacks

SIG: A New Backdoor Attack in CNNS by Training Set Corruption Without Label Poisoning

Barni, M., Kallas, K., & Tondi, B. (2019). > A new Backdoor Attack in CNNs by training set corruption without label poisoning. > arXiv preprint arXiv:1902.11237 superimposed sinusoidal backdoor signal with default parameters """ alpha = 0.2 img = np.float32(img) pattern = np.zeros_like(img) m = pattern.shape[1] for i in range(img.shape[0]): for j in range(img.shape[1]): for k in range(img.shape[2]): pattern[i, j] = delta * np.sin(2 * np.pi * j * f / m) img = alpha * np.uint32(img) + (1 - alpha) * pattern img = np.uint8(np.clip(img, 0, 255)) # if debug: # cv2.imshow('planted image', img) # cv2.waitKey() return img ">
## reference code
def plant_sin_trigger(img, delta=20, f=6, debug=False):
    """
    Implement paper:
    > Barni, M., Kallas, K., & Tondi, B. (2019).
    > A new Backdoor Attack in CNNs by training set corruption without label poisoning.
    > arXiv preprint arXiv:1902.11237
    superimposed sinusoidal backdoor signal with default parameters
    """
    alpha = 0.2
    img = np.float32(img)
    pattern = np.zeros_like(img)
    m = pattern.shape[1]
    for i in range(img.shape[0]):
        for j in range(img.shape[1]):
            for k in range(img.shape[2]):
                pattern[i, j] = delta * np.sin(2 * np.pi * j * f / m)

    img = alpha * np.uint32(img) + (1 - alpha) * pattern
    img = np.uint8(np.clip(img, 0, 255))

    #     if debug:
    #         cv2.imshow('planted image', img)
    #         cv2.waitKey()

    return img

Dynamic: Input-aware Dynamic Backdoor Attack

FC: Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks

DFST: Deep Feature Space Trojan Attack of Neural Networks by Controlled Detoxification

LBA: Latent Backdoor Attacks on Deep Neural Networks

CBA: Composite Backdoor Attack for Deep Neural Network by Mixing Existing Benign Features

Feature space attack benchmark

Note: This repository is the official implementation of Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and Data Poisoning Attacks.

Library

Note: TrojanZoo provides a universal pytorch platform to conduct security researches (especially backdoor attacks/defenses) of image classification in deep learning.

Backdoors 101 — is a PyTorch framework for state-of-the-art backdoor defenses and attacks on deep learning models.

poisoning Feature space attack benchmark A unified benchmark problem for data poisoning attacks

References

If you find this code is useful for your research, please cite our paper

@inproceedings{li2021anti,
  title={Anti-Backdoor Learning: Training Clean Models on Poisoned Data},
  author={Li, Yige and Lyu, Xixiang and Koren, Nodens and Lyu, Lingjuan and Li, Bo and Ma, Xingjun},
  booktitle={NeurIPS},
  year={2021}
}

Contacts

If you have any questions, leave a message below with GitHub.

Owner
Yige-Li
CV&DeepLearning&Security
Yige-Li
Dialect classification

Dialect-Classification This repository presents the data that was used in a talk at ICKL-5 (5th International Conference on Kurdish Linguistics) at th

Kurdish-BLARK 0 Nov 12, 2021
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
Pytorch Lightning 1.2k Jan 06, 2023
Latex code for making neural networks diagrams

PlotNeuralNet Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, l

Haris Iqbal 18.6k Jan 01, 2023
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing

Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly! Efficient and Scalable Physics-Informed Deep Learning Collocation-

tensordiffeq 74 Dec 09, 2022
🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

Realcat 270 Jan 07, 2023
Exadel CompreFace is a free and open-source face recognition GitHub project

Exadel CompreFace is a leading free and open-source face recognition system Exadel CompreFace is a free and open-source face recognition service that

Exadel 2.6k Jan 04, 2023
SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement

SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement This repository implements the approach described in SporeAgent: Reinforced

Dominik Bauer 5 Jan 02, 2023
CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images

CurriculumNet Introduction This repo contains related code and models from the ECCV 2018 CurriculumNet paper. CurriculumNet is a new training strategy

156 Jul 04, 2022
Split your patch similarly to `git add -p` but supporting multiple buckets

split-patch.py This is git add -p on steroids for patches. Given a my.patch you can run ./split-patch.py my.patch You can choose in which bucket to p

102 Oct 06, 2022
Label Hallucination for Few-Shot Classification

Label Hallucination for Few-Shot Classification This repo covers the implementation of the following paper: Label Hallucination for Few-Shot Classific

Yiren Jian 13 Nov 13, 2022
一个多语言支持、易使用的 OCR 项目。An easy-to-use OCR project with multilingual support.

AgentOCR 简介 AgentOCR 是一个基于 PaddleOCR 和 ONNXRuntime 项目开发的一个使用简单、调用方便的 OCR 项目 本项目目前包含 Python Package 【AgentOCR】 和 OCR 标注软件 【AgentOCRLabeling】 使用指南 Pytho

AgentMaker 98 Nov 10, 2022
Convex optimization for fun and profit.

CFMM Optimal Routing This repository contains the code needed to generate the figures used in the paper Optimal Routing for Constant Function Market M

Guillermo Angeris 183 Dec 29, 2022
A naive ROS interface for visualDet3D.

YOLO3D ROS Node This repo contains a Monocular 3D detection Ros node. Base on https://github.com/Owen-Liuyuxuan/visualDet3D All parameters are exposed

Yuxuan Liu 19 Oct 08, 2022
An Unpaired Sketch-to-Photo Translation Model

Unpaired-Sketch-to-Photo-Translation We have released our code at https://github.com/rt219/Unsupervised-Sketch-to-Photo-Synthesis This project is the

38 Oct 28, 2022
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Rituraj Dutta 7 Nov 27, 2022
Official implementation of Long-Short Transformer in PyTorch.

Long-Short Transformer (Transformer-LS) This repository hosts the code and models for the paper: Long-Short Transformer: Efficient Transformers for La

NVIDIA Corporation 198 Dec 29, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
MoCap-Solver: A Neural Solver for Optical Motion Capture Data

MoCap-Solver is a data-driven-based robust marker denoising method, which takes raw mocap markers as input and outputs corresponding clean markers and skeleton motions.

55 Dec 28, 2022