DA2Lite is an automated model compression toolkit for PyTorch.

Overview

DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models.

MIT licensed Python version support Pytorch version support

Star us on GitHub — it helps!!

Frameworks & Libraries Algorithms
Built-in
  • Supported Framework
    • PyTorch

Install

git clone https://github.com/da2so/DA2Lite.git

You will need a machine with a GPU and CUDA installed.
Then, you prepare runtime environment:

pip install -r requirements.txt

Use

Run

main.py(DA2Lite) runs with two main configurations like as follows:

CUDA_VISIBLE_DEVICES=0 python main.py --train_config_file=./configs/train/cifar10/cifar10/vgg16.yaml --compress_config_file=./configs/compress/tucker.yaml

The first one is train_config_file, which indicates training configurations and the other is compress_config_file, which represents compress configurations. The details of available configurations are described in Here.

After you run DA2Lite to compress a DNN model, logging and compressed model are saved in ./log directory.

The following shows the format of saving:

  • YYYY-MM-DD.HH.MM.SS : format of saved directory for an instance.
    • models
      • origin_{dataset}_{model}.pt : The original model is saved.
      • compress_1_{dataset}_{model}.pt : The first compressed model is saved.
      • ...
    • process.log : The inevitable log is only logged.
    • specific_process.log : The training procedure log is added with process.log

Example

  • Run the CIFAR10 example with resnet18 using tucker decomposition.
    • The pretrained-model are decomposed and right after fine-tuned: Here

Result

Cifar10 dataset

Model Acc(%) Param num(M) MACs(G) File size(MB) Download
ResNet18 94.74% -> 94.14% (-0.6) 11.17M -> 0.75M (14.81x) 0.56G -> 0.19G (2.96x) 42.70MB -> 2.96MB (14.44x) Here
Vgg16 90.83% -> 88.37% (-2.46) 14.72M -> 0.38M (39.12x) 0.31G -> 0.1G (3.29x) 56.16MB -> 1.45MB (38.71x) Here
Vgg16_bn 93.22% -> 92.74% (-0.48) 14.73M -> 0.71M (20.7x) 0.31G -> 0.11G (2.93x) 56.25MB -> 2.77MB (20.29x) Here

TODO

  • Multi-GPU training
  • PyTorchMobile conversion
  • Train a model based on a custom dataset
  • Rand-augmentation for improving an accuracy
  • Make a model zoo
  • Up-to-date model architectures.
  • Train a model for object detection tasks (further future...)
  • Compression methods for object detection tasks (further future...)

License

The entire codebase is under MIT license

Owner
Sinhan Kang
Explainable AI(XAI), Model Compression
Sinhan Kang
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
JAX bindings to the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) library

JAX bindings to FINUFFT This package provides a JAX interface to (a subset of) the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) lib

Dan Foreman-Mackey 32 Oct 15, 2022
Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models

Clara Meister 50 Nov 12, 2022
Source code for our paper "Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash"

Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash Abstract: Apple recently revealed its deep perceptual hashing system NeuralHash to

<a href=[email protected]"> 11 Dec 03, 2022
Transformer - Transformer in PyTorch

Transformer 完成进度 Embeddings and PositionalEncoding with example. MultiHeadAttent

Tianyang Li 1 Jan 06, 2022
DeepMReye: magnetic resonance-based eye tracking using deep neural networks

DeepMReye: magnetic resonance-based eye tracking using deep neural networks

73 Dec 21, 2022
HGCN: Harmonic Gated Compensation Network For Speech Enhancement

HGCN The official repo of "HGCN: Harmonic Gated Compensation Network For Speech Enhancement", which was accepted at ICASSP2022. How to use step1: Calc

ScorpioMiku 33 Nov 14, 2022
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
PyTorch implementation of probabilistic deep forecast applied to air quality.

Probabilistic Deep Forecast PyTorch implementation of a paper, titled: Probabilistic Deep Learning to Quantify Uncertainty in Air Quality Forecasting

Abdulmajid Murad 13 Nov 16, 2022
Safe Policy Optimization with Local Features

Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi

Akifumi Wachi 6 Jun 05, 2022
Learning Modified Indicator Functions for Surface Reconstruction

Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio

4 Apr 18, 2022
Revisiting Temporal Alignment for Video Restoration

Revisiting Temporal Alignment for Video Restoration [arXiv] Kun Zhou, Wenbo Li, Liying Lu, Xiaoguang Han, Jiangbo Lu We provide our results at Google

52 Dec 25, 2022
(IEEE TIP 2021) Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

RDPNet IEEE TIP 2021: Regularized Densely-connected Pyramid Network for Salient Instance Segmentation PyTorch training and testing code are available.

Yu-Huan Wu 41 Oct 21, 2022
GeDML is an easy-to-use generalized deep metric learning library

GeDML is an easy-to-use generalized deep metric learning library

Borui Zhang 32 Dec 05, 2022
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

Sense-GVT 14 Jul 07, 2022
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi

XXQQ 42 Dec 09, 2022
Molecular AutoEncoder in PyTorch

MolEncoder Molecular AutoEncoder in PyTorch Install $ git clone https://github.com/cxhernandez/molencoder.git && cd molencoder $ python setup.py insta

Carlos Hernández 80 Dec 05, 2022
Covid-19 Test AI (Deep Learning - NNs) Software. Accuracy is the %96.5, loss is the 0.09 :)

Covid-19 Test AI (Deep Learning - NNs) Software I developed a segmentation algorithm to understand whether Covid-19 Test Photos are positive or negati

Emirhan BULUT 28 Dec 04, 2021
A library for building and serving multi-node distributed faiss indices.

About Distributed faiss index service. A lightweight library that lets you work with FAISS indexes which don't fit into a single server memory. It fol

Meta Research 170 Dec 30, 2022
code for "Self-supervised edge features for improved Graph Neural Network training",

Self-supervised edge features for improved Graph Neural Network training Data availability: Here is a link to the raw data for the organoids dataset.

Neal Ravindra 23 Dec 02, 2022