Wenet STT Python

Overview

Wenet STT Python

Beta Software

Simple Python library, distributed via binary wheels with few direct dependencies, for easily using WeNet models for speech recognition.

Donate Donate Donate

Requirements:

  • Python 3.7+ x64
  • Platform: Windows/Linux/MacOS
  • Python package requirements: cffi, numpy
  • Wenet Model (must be "runtime" format)
    • Several are available ready-to-go on this project's releases page and below.

Features:

  • Synchronous decoding of single utterance
  • Streaming decoding, using separate thread

Models:

Model Download Size
gigaspeech_20210728_u2pp_conformer 549 MB
gigaspeech_20210811_conformer_bidecoder 540 MB

Usage

from wenet_stt import WenetSTTModel
model = WenetSTTModel(WenetSTTModel.build_config('model_dir'))

import wave
with wave.open('tests/test.wav', 'rb') as wav_file:
    wav_samples = wav_file.readframes(wav_file.getnframes())

assert model.decode(wav_samples).lower() == 'it depends on the context'

Also contains a simple CLI interface for recognizing wav files:

$ python -m wenet_stt decode model test.wav
IT DEPENDS ON THE CONTEXT
$ python -m wenet_stt decode model test.wav test.wav
IT DEPENDS ON THE CONTEXT
IT DEPENDS ON THE CONTEXT
$ python -m wenet_stt -h
usage: python -m wenet_stt [-h] {decode} ...

positional arguments:
  {decode}    sub-command
    decode    decode one or more WAV files

optional arguments:
  -h, --help  show this help message and exit

Installation/Building

Recommended installation via binary wheel from pip (requires a recent version of pip):

python -m pip install wenet_stt

For details on building from source, see the Github Actions build workflow.

Author

License

This project is licensed under the GNU Affero General Public License v3 (AGPL-3.0-or-later). See the LICENSE file for details. If this license is problematic for you, please contact me.

Acknowledgments

  • Contains and uses code from WeNet, licensed under the Apache-2.0 License, and other transitive dependencies (see source).
You might also like...
Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project
Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project

Space Invaders This is a simple SPACE INVADER game create using PYGAME whihc hav

Snapchat-filters-app-opencv-python - Here we used opencv and other inbuilt python modules to create filter application like snapchat Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python
Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python

yolov5-opencv-cpp-python Example of performing inference with ultralytics YOLO V

Python-kafka-reset-consumergroup-offset-example - Python Kafka reset consumergroup offset example

Python Kafka reset consumergroup offset example This is a simple example of how

Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

A python-image-classification web application project, written in Python and served through the Flask Microframework
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and Tensorflow wrappers, to make predictions on uploaded images.

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and Tensorflow wrappers, to make predictions on uploaded images.
PyArmadillo: an alternative approach to linear algebra in Python

PyArmadillo is a linear algebra library for the Python language, with an emphasis on ease of use.

Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

Comments
  • library dependency failures

    library dependency failures

    when running decode, i get a library linking issue python -m wenet_stt decode model test.wav

      File "/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/runpy.py", line 194, in _run_module_as_main
        return _run_code(code, main_globals, None,
      File "/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/runpy.py", line 87, in _run_code
        exec(code, run_globals)
      File "/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/wenet_stt/__main__.py", line 46, in <module>
        main()
      File "/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/wenet_stt/__main__.py", line 24, in main
        wenet_stt = WenetSTTModel(WenetSTTModel.build_config(args.model_dir))
      File "/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/wenet_stt/wrapper.py", line 71, in __init__
        super().__init__()
      File "/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/wenet_stt/wrapper.py", line 35, in __init__
        self.init_ffi()
      File "/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/wenet_stt/wrapper.py", line 39, in init_ffi
        cls._lib = _ffi.init_once(cls._init_ffi, cls.__name__ + '._init_ffi')
      File "/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/cffi/api.py", line 749, in init_once
        result = func()
      File "/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/wenet_stt/wrapper.py", line 48, in _init_ffi
        return _ffi.dlopen(_library_binary_path)
      File "/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/cffi/api.py", line 150, in dlopen
        lib, function_cache = _make_ffi_library(self, name, flags)
      File "/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/cffi/api.py", line 832, in _make_ffi_library
        backendlib = _load_backend_lib(backend, libname, flags)
      File "/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/cffi/api.py", line 827, in _load_backend_lib
        raise OSError(msg)
    OSError: cannot load library '/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/wenet_stt/libwenet_stt_lib.dylib': dlopen(/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/wenet_stt/libwenet_stt_lib.dylib, 0x0002): Library not loaded: @rpath/libtorch.dylib
      Referenced from: /Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/wenet_stt/libwenet_stt_lib.dylib
      Reason: tried: '/private/var/folders/w_/vt72cbr92797v0q4r91wk8380000gn/T/pip-req-build-tp3um_02/native/wenet/runtime/server/x86/fc_base/openfst-subbuild/openfst-populate-prefix/lib/libtorch.dylib' (no such file), '/private/var/folders/w_/vt72cbr92797v0q4r91wk8380000gn/T/pip-req-build-tp3um_02/native/wenet/runtime/server/x86/fc_base/libtorch-src/lib/libtorch.dylib' (no such file), '/private/var/folders/w_/vt72cbr92797v0q4r91wk8380000gn/T/pip-req-build-tp3um_02/native/wenet/runtime/server/x86/fc_base/openfst-subbuild/openfst-populate-prefix/lib/libtorch.dylib' (no such file), '/private/var/folders/w_/vt72cbr92797v0q4r91wk8380000gn/T/pip-req-build-tp3um_02/native/wenet/runtime/server/x86/fc_base/libtorch-src/lib/libtorch.dylib' (no such file), '/Users/myuser/opt/miniconda3/envs/wenet/lib/libtorch.dylib' (no such file), '/Users/myuser/opt/miniconda3/envs/wenet/bin/../lib/libtorch.dylib' (no such file), '/usr/local/lib/libtorch.dylib' (no such file), '/usr/lib/libtorch.dylib' (no such file).  Additionally, ctypes.util.find_library() did not manage to locate a library called '/Users/myuser/opt/miniconda3/envs/wenet/lib/python3.8/site-packages/wenet_stt/libwenet_stt_lib.dylib'```
    opened by eschmidbauer 0
  • Issues with LM (TLG-rescoring)

    Issues with LM (TLG-rescoring)

    I'm trying to use CTC WFST-search for rescoring with compiled TLG graph using this tutorial: https://wenet-e2e.github.io/wenet/lm.html and passing these parameters to decoder: config = { "model_path": f"wenet/{model_name}/final.zip", "dict_path": f"wenet/{model_name}/words.txt", "rescoring_weight": 1.0, "blank_skip_thresh": 0.98, "beam": 15.0, "lattice_beam": 7.5, "min_active": 10, "max_active": 7000, "ctc_weight": 0.5, "reverse_weight": 0.0, "chunk_size": -1, "fst_path": f"wenet/examples/aishell/s0/data/lang_test/TLG.fst" }

    However I'm getting error: `ERROR: FstImpl::ReadHeader: FST not of type vector, found qq: wenet/examples/aishell/s0/data/lang_test/TLG.fst F1102 22:28:04.138978 26002 wenet_stt_lib.cpp:160] Check failed: fst != nullptr *** Check failure stack trace: *** @ 0x7f81d6cfb38d google::LogMessage::Fail() @ 0x7f81d6cfd604 google::LogMessage::SendToLog() @ 0x7f81d6cfaec0 google::LogMessage::Flush() @ 0x7f81d6cfdd89 google::LogMessageFatal::~LogMessageFatal() @ 0x7f81e83701b5 InitDecodeResourceFromSimpleJson() @ 0x7f81e8380ebc WenetSTTModel::WenetSTTModel() @ 0x7f81e83719bb wenet_stt__construct @ 0x7f82021b7dec ffi_call_unix64 @ 0x7f82021b6f55 ffi_call @ 0x7f82023d9e56 cdata_call @ 0x5da58b _PyObject_FastCallKeywords @ 0x54bc71 (unknown) @ 0x552d2d _PyEval_EvalFrameDefault @ 0x54cb89 _PyEval_EvalCodeWithName @ 0x5dac6e _PyFunction_FastCallDict @ 0x590713 (unknown) @ 0x5da1c9 _PyObject_FastCallKeywords @ 0x552fb7 _PyEval_EvalFrameDefault @ 0x54c522 _PyEval_EvalCodeWithName @ 0x54e933 PyEval_EvalCode @ 0x6305a2 (unknown) @ 0x630657 PyRun_FileExFlags @ 0x6312cf PyRun_SimpleFileExFlags @ 0x654232 (unknown) @ 0x65458e _Py_UnixMain @ 0x7f820422fb97 __libc_start_main @ 0x5e0cca _start @ (nil) (unknown) Aborted

    The same TLG-graph works fine when I'm using the default WeNet decoder. Ubuntu 18.04.

    opened by tonko22 0
Owner
David Zurow
david.zurow at gmail
David Zurow
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning | 斗地主AI

[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning DouZero is a reinforcement learning framework for DouDizhu (斗地主), t

Kwai Inc. 3.1k Jan 04, 2023
Management Dashboard for Torchserve

Torchserve Dashboard Torchserve Dashboard using Streamlit Related blog post Usage Additional Requirement: torchserve (recommended:v0.5.2) Simply run:

Ceyda Cinarel 103 Dec 10, 2022
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022
SelfRemaster: SSL Speech Restoration

SelfRemaster: Self-Supervised Speech Restoration Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesi

Takaaki Saeki 46 Jan 07, 2023
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

364 Dec 14, 2022
Official Repository for the paper "Improving Baselines in the Wild".

iWildCam and FMoW baselines (WILDS) This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed) For general

Kazuki Irie 3 Nov 24, 2022
This is the repository for the paper "Have I done enough planning or should I plan more?"

Metacognitive Learning Tool box https://re.is.mpg.de What Is This? This repository contains two modules used to analyse metacognitive learning in huma

0 Dec 01, 2021
A paper using optimal transport to solve the graph matching problem.

GOAT A paper using optimal transport to solve the graph matching problem. https://arxiv.org/abs/2111.05366 Repo structure .github: Files specifying ho

neurodata 8 Jan 04, 2023
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
Official repository for the paper "Instance-Conditioned GAN"

Official repository for the paper "Instance-Conditioned GAN" by Arantxa Casanova, Marlene Careil, Jakob Verbeek, Michał Drożdżal, Adriana Romero-Soriano.

Facebook Research 510 Dec 30, 2022
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022