⚖️🔁🔮🕵️‍♂️🦹🖼️ Code for *Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances* paper.

Overview

Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances

This repository contains the code for Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances.

Reported running times are approximate, intended to give a general idea of how long each step will take. Estimates are based on times encountered while developing on Ubuntu 21.04 with hardware that includes an AMD Ryzen 9 3950X CPU, 64GB of memory, and an NVIDIA TITAN RTX GPU with 24GB of memory. The intermediate results utilize about 600 gigabytes of storage.

Requirements

The code was developed using Python 3.9 on Ubuntu 21.04. Other systems and Python versions may work, but have not been tested.

Python library dependencies are specified in requirements.txt. Versions are pinned for reproducibility.

Installation

  • Optionally create and activate a virtual environment.
python3 -m venv env
source env/bin/activate
  • Install Python dependencies, specified in requirements.txt.
    • 2 minutes
pip3 install -r requirements.txt

Running the Code

By default, output is saved to the ./workspace directory, which is created automatically.

  • Train ResNet classification models.
    • 6 weeks
python3 src/train_nets.py
  • Evaluate the models, extracting representations from the corresponding data.
    • 1 hour
python3 src/eval_nets.py
  • Adversarially perturb test images, evaluating and extracting representations from the corresponding data.
    • 21 hours
python3 src/attack.py
  • Train and evaluate model-wise control adversarial instance detectors, varying the number of underlying models used for generating features, where the underlying detectors are trained on representations from a single model.
    • 1 day
OMP_NUM_THREADS=1 python3 src/detect_model_wise_control.py
  • Train and evaluate model-wise treatment adversarial instance detectors, varying the number of underlying models used for generating features, where the underlying detectors are trained on representations from multiple models.
    • 1 day
OMP_NUM_THREADS=1 python3 src/detect_model_wise_treatment.py
  • Train and evaluate unit-wise control adversarial instance detectors, varying the number of units used for generating features, where the units come from a single underlying model.
    • 1 hour
OMP_NUM_THREADS=1 python3 src/detect_unit_wise_control.py
  • Train and evaluate unit-wise treatment adversarial instance detectors, varying the number of units used for generating features, where the units come from multiple underlying models.
    • 2 hours
OMP_NUM_THREADS=1 python3 src/detect_unit_wise_treatment.py
  • Generate plots.
    • 2 seconds
python3 src/plot.py

Citation

@misc{steinberg2021measuring,
      title={Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances}, 
      author={Daniel Steinberg and Paul Munro},
      year={2021},
      eprint={2111.07035},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Style-based Neural Drum Synthesis with GAN inversion

Style-based Drum Synthesis with GAN Inversion Demo TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the pap

Sound and Music Analysis (SoMA) Group 29 Nov 19, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads-Tutorial-3 Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads Inc 2 Jan 03, 2022
Resources complimenting the Machine Learning Course led in the Faculty of mathematics and informatics part of Sofia University.

Machine Learning and Data Mining, Summer 2021-2022 How to learn data science and machine learning? Programming. Learn Python. Basic Statistics. Take a

Simeon Hristov 8 Oct 04, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022
Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Kevin Bock 1.5k Jan 06, 2023
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Kai Zhang 2k Dec 31, 2022
Active Offline Policy Selection With Python

Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian

DeepMind 27 Oct 15, 2022
Constructing interpretable quadratic accuracy predictors to serve as an objective function for an IQCQP problem that represents NAS under latency constraints and solve it with efficient algorithms.

IQNAS: Interpretable Integer Quadratic programming Neural Architecture Search Realistic use of neural networks often requires adhering to multiple con

0 Oct 24, 2021
R3Det based on mmdet 2.19.0

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object Installation # install mmdetection first if you haven't installed it

SJTU-Thinklab-Det 38 Dec 15, 2022
Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionaries

Dictionary Learning for Clustering on Hyperspectral Images Overview Framework for Spectral Clustering on the Sparse Coefficients of Learned Dictionari

Joshua Bruton 6 Oct 25, 2022
Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Vision Transformer Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: T

Eunkwang Jeon 1.4k Dec 28, 2022
Automated Attendance Project Using Face Recognition

dependencies for project: cmake 3.22.1 dlib 19.22.1 face-recognition 1.3.0 openc

Rohail Taha 1 Jan 09, 2022
Code for the paper "There is no Double-Descent in Random Forests"

Code for the paper "There is no Double-Descent in Random Forests" This repository contains the code to run the experiments for our paper called "There

2 Jan 14, 2022
PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN in PyTorch PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in READM

Taehoon Kim 1k Jan 04, 2023