Hotplugger: Real USB Port Passthrough for VFIO/QEMU!

Related tags

Hardwarehotplugger
Overview

Hotplugger: Real USB Port Passthrough for VFIO/QEMU!

Welcome to Hotplugger! This app, as the name might tell you, is a combination of some scripts (python, yaml, udev rules and some QEMU args) to allow you to pass through an actual USB port into a VM. Instead of passing the USB root hub (which could have the side effect of passing all the ports, including the ones you didn't want to) or another PCIe hub or something, you can just pass a specific USB port to a VM and have the others free for anything else. Plus, it saves you from using the vfio-pci driver for the USB root hub, so you can keep using it for evdev or other things on the VM host.

Requirements

  • monitor.py and hotplugger.py require Python 3
  • Only tested with QEMU 5.0.0. Untested with older or newer versions.

Quick start (Ubuntu 20.10)

  1. git clone https://github.com/darkguy2008/hotplugger.git

  2. (Optional) run python3 monitor.py and follow the prompts. Basically once you hit Enter you have to plug and unplug an USB device (a thumbdrive or audio device preferred) into the USB ports that you want to know their DEVPATH route from. This will help you identify them so you can write them into config.yaml in the ports array. This array only accepts DEVPATH routes that UDEV generates.

  3. Edit config.yaml. It must stay in the same folder as monitor.py and hotplugger.py. Look at the current example: It's set for a Windows VM (the name doesn't matter, as long as it's unique within the entries of the same file). Make sure the socket property matches the file path of the QEMU chardev device pointing to an Unix domain socket file and in the ports array put the list of the udev DEVPATH of the USB ports you want to pass through to that VM:

    virtual_machines:
    
      windows:
        socket: /home/dragon/vm/test/qmp-sock
        ports:
          - /devices/pci0000:00/0000:00:14.0/usb3/3-1
          - /devices/pci0000:00/0000:00:14.0/usb3/3-2
          - /devices/pci0000:00/0000:00:14.0/usb4/4-1
          - /devices/pci0000:00/0000:00:14.0/usb4/4-2
    
  4. Create an /etc/udev/rules.d/99-zzz-local.rules file with the following content:

    SUBSYSTEM=="usb", ACTION=="add", RUN+="/bin/bash -c 'python3 /path-to-hotplugger/hotplugger.py >> /tmp/hotplugger.log' 2>&1"
    SUBSYSTEM=="usb", ACTION=="remove", RUN+="/bin/bash -c 'python3 /path-to-hotplugger/hotplugger.py >> /tmp/hotplugger.log' 2>&1"
    

    Make sure to change path-to-hotplugger with the path where you cloned the repo to, or installed the package. It can be simplified, but this one is useful in case you want to debug and see what's going on. Otherwise, proceed with a simpler file:

    SUBSYSTEM=="usb", ACTION=="add", RUN+="/bin/bash -c 'python3 /path-to-hotplugger/hotplugger.py'"
    SUBSYSTEM=="usb", ACTION=="remove", RUN+="/bin/bash -c 'python3 /path-to-hotplugger/hotplugger.py'"
    
  5. Create the QMP monitor Unix domain socket if you haven't already in your QEMU args. I use this:

    -chardev socket,id=mon1,server,nowait,path=./qmp-sock
    -mon chardev=mon1,mode=control,pretty=on
    
  6. Have a coffee!

Libvirt setup

This is a work in progress, but here's some steps to get you started:

  1. Edit your VM's XML config like this:

    1. <domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>
        <name>QEMUGuest1name>
        <uuid>c7a5fdbd-edaf-9455-926a-d65c16db1809uuid>
        ...
        <qemu:commandline>
          <qemu:arg value='-chardev'/>
          <qemu:arg value='socket,id=mon1,server,nowait,path=/tmp/my-vm-sock'/>
          <qemu:arg value='-mon'/>
          <qemu:arg value='chardev=mon1,mode=control,pretty=on'/>
        qemu:commandline>
      domain>

      Add the xmlns attribute and the QEMU commandline arguments like that. The /tmp/my-vm-sock is the name of an unix domain socket. You can use any, just make sure to also put the same path in the config.yaml file.

  2. If you get a permissions issue, edit /etc/libvirt/qemu.conf and add security_driver = "none"to it to fix apparmor being annoying about it.

How it works

  1. The udev rule launches the script on every USB event. For each USB add/remove action there's around 3 to 5+ events. This allows the app to act at any step in the action lifecycle.
  2. In the first step it gets the kernel environment variables from udev and stores them in a temp file. In those variables, the DEVPATH, the DEVNUM (host address in QEMU, it seems to change and is sequential...) and the BUSNUM (bus address in QEMU) are captured. For the subsequent events, the following steps are run:
    1. It requests QEMU through the Unix socket and the info usbhost QMP command the USB info from the host. This gives it an extra field: The host port where the device is also connected to. Since I got the host and bus addresses in the first event, I can use that to parse through the info usbhost command's output and find the port connected to the device.
    2. If the port is found, using the device_add command, a new usb-host device is added using the USB bus and port we got in the previous step, and assigns it a predictable ID that it can use to unplug the device afterwards. To add this of course, the VM should have a usb-xhci device I think. Not sure if it's required or not, but I prefer to add it as I have USB 3.0 ports and devices.
    3. The temp file is cleared once the device_add command has run successfully.

Steps 2.1, 2.2 and 2.3 are run on every udev event. For instance, for an audio device it gets 3 or 4 events: One for the HID device, and two or so for the audio devices. My audio device (Corsair Void Elite Wireless) has both stereo audio and a communications device (mono audio, for mic) so for a single dongle like that I get those many events. Since these steps are ran on all the events, there's multiple chances to do the hotplug action. When one of them succeeds, the others will silently fail as QEMU will say that the same device ID is being used, so all is good.

Troubleshooting

If for some reason the app doesn't seem to work, try these methods:

  • Remove the /tmp folder where hotplugger.py is located
  • Reboot the computer
  • Reboot udev: sudo udevadm control --reload-rules && sudo udevadm trigger
  • View udev's logfile: sudo service udev restart && sudo udevadm control --log-priority=debug && journalctl -f | grep -i hotplugger
  • If you want to see what will be run when you plug a device, try with this command to simulate an udev event: udevadm test $(udevadm info -a --path=/devices/pci0000:00/0000:00:14.0/usb3/3-1/3-1:1.0) --action=add replacing --path with the path of the USB port down to the device itself (in this case, I had a device connected to the usb3/3-1 port, identified as 3-1:1.0.

Thank you!

A lot of work and sleepless nights were involved in this procedure, so if this app helps you in any way or another, please consider sending a small donation, it helps a lot in these tough times!

Changelog

(2020-02-05)

  • Initial changelog writing
  • App was refactored a bit with improved python mad skillz. It also seems to be a bit more stable and robust, it doesn't hang much anymore and USB detection seems to work better. This is due to the fact that I added a stupid 1-second delay after all the USB UDEV events have gone through. Since there's no way to know when UDEV has "finished" sending all the events (and there could be a lot more) the commands being sent to QEMU to add the device will have to wait 1 second now. While it's not ideal, it should be enough to avoid a VM hanging up and I can live with that.
Owner
DARKGuy (Alemar)
DARKGuy (Alemar)
The example shows using local self-hosted runners on-premises by making use of a runner on a Raspberry Pi with LED's attached to it

The example shows using local self-hosted runners on-premises by making use of a runner on a Raspberry Pi with LED's attached to it

Martin Woodward 6 Nov 13, 2021
Adafruit IO connected smart thermostat based on CircuitPython.

Adafruit IO Thermostat Adafruit IO connected smart thermostat based on CircuitPython. Background and Motivation I have a 24 V Heat-only system with a

Shubham Chaudhary 1 Jan 18, 2022
SALUS THERMOSTAT Custom component for Home-Assistant

Home-Assistant Custom Components Custom Components for Home-Assistant (http://www.home-assistant.io) Salus Thermostat Climate Component My device is R

21 Dec 18, 2022
Python apps to assist with Gas Blending

Welcome to DiveTools Gas Blending This tool is for testing and educational use. It is not intended to confirm the mix of breathing gases. If this tool

Tucker 7 Sep 18, 2022
PyLog - Simple keylogger that uses pynput to listen to keyboard input.

Simple keylogger that uses pynput to listen to keyboard input. Outputs to a text file and the terminal. Press the escape key to stop.

1 Dec 29, 2021
Segger Embedded Studio project for building & debugging Flipper Zero firmware.

Segger Embedded Studio project for Flipper Zero firmware Установка Добавить данный репозиторий в качестве сабмодуля в корень локальной копии репозитор

25 Dec 28, 2022
Final-project-robokeeper created by GitHub Classroom

RoboKeeper! Jonny Bosnich, Joshua Cho, Lio Liang, Marco Morales, Cody Nichoson Demonstration Videos Grabbing the paddle: https://youtu.be/N0HPvFNHrTw

Cody Nichoson 1 Dec 12, 2021
A battery pack simulation tool that uses the PyBaMM framework

Overview of liionpack liionpack takes a 1D PyBaMM model and makes it into a pack. You can either specify the configuration e.g. 16 cells in parallel a

PyBaMM Team 40 Jan 05, 2023
circuitpython version of PyBasic for microcontrollers

cPyBasic Circuitpython version of PyBasic for microcontrollers Current version work only for Adafruit titano & CardKB for now. The origninal PyBasic w

BeBoXoS 3 Nov 14, 2021
Raspberry Pi Pico support for VS Code

Pico-Go VS Code Extension Pico-Go provides code auto-completion and allows you to communicate with your Raspberry Pi Pico board using the built-in REP

Chris Wood 114 Dec 28, 2022
iot-dashboard: Fully integrated architecture platform with a dashboard for Logistics Monitoring, Internet of Things.

Fully integrated architecture platform with a dashboard for Logistics Monitoring, Internet of Things. Written in Python. Flask applicati

2 Jul 29, 2022
A python project based on a TV show Wheel of Fortune

Wheel-of-Fortune-using-Python Wheel of Fortune in python this game is the hands-on project in Python 3 Programming Specialization offered By Universit

Eszter Pai 1 Jan 03, 2022
Simple Microservice to control 433Mhz wireless sockets over HTTP, e.g. on a RaspberryPi

REST-light is a simple microservice to control 433Mhz wireless sockets over HTTP, e.g. on a RaspberryPi. The main usage is an easy integration of 433M

Pascal Höhnel 1 Jan 09, 2022
Zev es un Bot/Juego RPG de Discord creado en y para aprender Python.

Zev es un Bot/Juego RPG de Discord creado en y para aprender Python.

Julen Smith 3 Jan 12, 2022
A IC scan test interface for Arduino

ICSCAN_ARDUINO Prerequisites Python 3.6 or higher arduino uno or nano what is this It is a bitstream tranceiver to test IC chip It sends bitstream to

Nifty Chips Laboratory 0 Sep 15, 2022
Example for Calculating Robot Dynamics Using Pinocchio Library

A Example for Calculating Robot Dynamics Using Pinocchio Library Developed by: Xinyang Tian. Platform: Linux + Pinocchio. In this work, i use Pinocchi

Rot_Tianers 33 Dec 28, 2022
ENC28J60 Ethernet chip driver for MicroPython (RP2)

micropy-ENC28J60 ENC28J60 Ethernet chip driver for MicroPython v1.17 (RP2) Rationale ENC28J60 is a popular and cheap module for DIY projects. At the m

11 Nov 16, 2022
Ha-rpi gpio - Home Assistant Raspberry Pi GPIO Integration

Home Assistant Raspberry Pi GPIO custom integration This is a spin-off from the

Shay Levy 98 Dec 24, 2022
A Python program that makes it easy to manage modules on a CircuitPython device!

CircuitPython-Bundle-Manager-v2 A Python program that makes it easy to manage modules on a CircuitPython device! The CircuitPython Bundle Manager v2 i

Ckyiu 1 Dec 18, 2021
What if home automation was homoiconic? Just transformations of data? No more YAML!

radiale what if home-automation was also homoiconic? The upper or proximal row contains three bones, to which Gegenbaur has applied the terms radiale,

Felix Barbalet 21 Mar 26, 2022