Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Related tags

Deep Learninghumor
Overview

HuMoR: 3D Human Motion Model for Robust Pose Estimation (ICCV 2021)

This is the official implementation for the ICCV 2021 paper. For more information, see the project webpage.

HuMoR Teaser

Environment Setup

Note: This code was developed on Ubuntu 16.04/18.04 with Python 3.7, CUDA 10.1 and PyTorch 1.6.0. Later versions should work, but have not been tested.

Create and activate a virtual environment to work in, e.g. using Conda:

conda create -n humor_env python=3.7
conda activate humor_env

Install CUDA and PyTorch 1.6. For CUDA 10.1, this would look like:

conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch

Install the remaining requirements with pip:

pip install -r requirements.txt

You must also have ffmpeg installed on your system to save visualizations.

Downloads & External Dependencies

This codebase relies on various external downloads in order to run for certain modes of operation. Here we briefly overview each and what they are used for. Detailed setup instructions are linked in other READMEs.

Body Model and Pose Prior

Detailed instructions to install SMPL+H and VPoser are in this documentation.

  • SMPL+H is used for the pose/shape body model. Downloading this model is necessary for all uses of this codebase.
  • VPoser is used as a pose prior only during the initialization phase of fitting, so it's only needed if you are using the test-time optimization functionality of this codebase.

Datasets

Detailed instructions to install, configure, and process each dataset are in this documentation.

  • AMASS motion capture data is used to train and evaluate (e.g. randomly sample) the HuMoR motion model and for fitting to 3D data like noisy joints and partial keypoints.
  • i3DB contains RGB videos with heavy occlusions and is only used in the paper to evaluate test-time fitting to 2D joints.
  • PROX contains RGB-D videos and is only used in the paper to evaluate test-time fitting to 2D joints and 3D point clouds.

Pretrained Models

Pretrained model checkpoints are available for HuMoR, HuMoR-Qual, and the initial state Gaussian mixture. To download (~215 MB), from the repo root run bash get_ckpt.sh.

OpenPose

OpenPose is used to detect 2D joints for fitting to arbitrary RGB videos. If you will be running test-time optimization on the demo video or your own videos, you must install OpenPose. To clone and build, please follow the OpenPose README in their repo.

Optimization in run_fitting.py assumes OpenPose is installed at ./external/openpose by default - if you install elsewhere, please pass in the location using the --openpose flag.

Fitting to RGB Videos (Test-Time Optimization)

To run motion/shape estimation on an arbitrary RGB video, you must have SMPL+H, VPoser, OpenPose, and a pretrained HuMoR model as detailed above. We have included a demo video in this repo along with a few example configurations to get started.

Note: if running on your own video, make sure the camera is not moving and the person is not interacting with uneven terrain in the scene (we assume a single ground plane). Also, only one person will be reconstructed.

To run the optimization on the demo video use:

python humor/fitting/run_fitting.py @./configs/fit_rgb_demo_no_split.cfg

This configuration optimizes over the entire video (~3 sec) at once (i.e. over all frames). If your video is longer than 2-3 sec, it is recommended to instead use the settings in ./configs/fit_rgb_demo_use_split.cfg which adds the --rgb-seq-len, --rgb-overlap-len, and --rgb-overlap-consist-weight arguments. Using this configuration, the input video is split into multiple overlapping sub-sequences and optimized in a batched fashion (with consistency losses between sub-sequences). This increases efficiency, and lessens the need to tune parameters based on video length. Note the larger the batch size, the better the results will be.

If known, it's highly recommended to pass in camera intrinsics using the --rgb-intrinsics flag. See ./configs/intrinsics_default.json for an example of what this looks like. If intrinsics are not given, default focal lengths are used.

Finally, this demo does not use PlaneRCNN to initialize the ground as described in the paper. Instead, it roughly initializes the ground at y = 0.5 (with camera up-axis -y). We found this to be sufficient and often better than using PlaneRCNN. If you want to use PlaneRCNN instead, set up a separate environment, follow their install instructions, then use the following command to run their method where example_image_dir contains a single frame from your video and the camera parameters: python evaluate.py --methods=f --suffix=warping_refine --dataset=inference --customDataFolder=example_image_dir. The results directory can be passed into our optimization using the --rgb-planercnn-res flag.

Visualizing RGB Results

The optimization is performed in 3 stages, with stages 1 & 2 being initialization using a pose prior and smoothing (i.e. the VPoser-t baseline) and stage 3 being the full optimization with the HuMoR motion prior. So for the demo, the final output for the full sequence will be saved in ./out/rgb_demo_no_split/results_out/final_results/stage3_results.npz. To visualize results from the fitting use something like:

python humor/fitting/viz_fitting_rgb.py  --results ./out/rgb_demo_no_split/results_out --out ./out/rgb_demo_no_split/viz_out --viz-prior-frame

By default, this will visualize the final full video result along with each sub-sequence separately (if applicable). Please use --help to see the many additional visualization options. This code is also useful to see how to load in and use the results for other tasks, if desired.

Fitting on Specific Datasets

Next, we detail how to run and evaluate the test-time optimization on the various datasets presented in the paper. In all these examples, the default batch size is quite small to accomodate smaller GPUs, but it should be increased depending on your system.

AMASS 3D Data

There are multiple settings possible for fitting to 3D data (e.g. noisy joints, partial keypoints, etc...), which can be specified using configuration flags. For example, to fit to partial upper-body 3D keypoints sampled from AMASS data, run:

python humor/fitting/run_fitting.py @./configs/fit_amass_keypts.cfg

Optimization results can be visualized using

python humor/fitting/eval_fitting_3d.py --results ./out/amass_verts_upper_fitting/results_out --out ./out/amass_verts_upper_fitting/eval_out  --qual --viz-stages --viz-observation

and evaluation metrics computed with

python humor/fitting/eval_fitting_3d.py --results ./out/amass_verts_upper_fitting/results_out --out ./out/amass_verts_upper_fitting/eval_out  --quant --quant-stages

The most relevant quantitative results will be written to eval_out/eval_quant/compare_mean.csv.

i3DB RGB Data

The i3DB dataset contains RGB videos with many occlusions along with annotated 3D joints for evaluation. To run test-time optimization on the full dataset, use:

python humor/fitting/run_fitting.py @./configs/fit_imapper.cfg

Results can be visualized using the same script as in the demo:

python humor/fitting/viz_fitting_rgb.py  --results ./out/imapper_fitting/results_out --out ./out/imapper_fitting/viz_out --viz-prior-frame

Quantitative evaluation (comparing to results after each optimization stage) can be run with:

python humor/fitting/eval_fitting_2d.py --results ./out/imapper_fitting/results_out --dataset iMapper --imapper-floors ./data/iMapper/i3DB/floors --out ./out/imapper_fitting/eval_out --quant --quant-stages

The final quantitative results will be written to eval_out/eval_quant/compare_mean.csv.

PROX RGB/RGB-D Data

PROX contains RGB-D data so affords fitting to just 2D joints and 2D joints + 3D point cloud. The commands for running each of these are quite similar, just using different configuration files. For running on the full RGB-D data, use:

python humor/fitting/run_fitting.py @./configs/fit_proxd.cfg

Visualization must add the --flip-img flag to align with the original PROX videos:

python humor/fitting/viz_fitting_rgb.py  --results ./out/proxd_fitting/results_out --out ./out/proxd_fitting/viz_out --viz-prior-frame --flip-img

Quantitative evalution (of plausibility metrics) for full RGB-D data uses

python humor/fitting/eval_fitting_2d.py --results ./out/proxd_fitting/results_out --dataset PROXD --prox-floors ./data/prox/qualitative/floors --out ./out/proxd_fitting/eval_out --quant --quant-stages

and for just RGB data is slightly different:

python humor/fitting/eval_fitting_2d.py --results ./out/prox_fitting/results_out --dataset PROX --prox-floors ./data/prox/qualitative/floors --out ./out/prox_fitting/eval_out --quant --quant-stages

Training & Testing Motion Model

There are two versions of our model: HuMoR and HuMoR-Qual. HuMoR is the main model presented in the paper and is best suited for test-time optimization. HuMoR-Qual is a slight variation on HuMoR that gives more stable and qualitatively superior results for random motion generation (see the paper for details).

Below we describe how to train and test HuMoR, but the exact same commands are used for HuMoR-Qual with a different configuration file at each step (see all provided configs).

Training HuMoR

To train HuMoR from scratch, make sure you have the processed version of the AMASS dataset at ./data/amass_processed and run:

python humor/train/train_humor.py @./configs/train_humor.cfg

The default batch size is meant for a 16 GB GPU.

Testing HuMoR

After training HuMoR or downloading the pretrained checkpoints, we can evaluate the model in multiple ways

To compute single-step losses (the exact same as during training) over the entire test set run:

python humor/test/test_humor.py @./configs/test_humor.cfg

To randomly sample a motion sequence and save a video visualization, run:

python humor/test/test_humor.py @./configs/test_humor_sampling.cfg

If you'd rather visualize the sampling results in an interactive viewer, use:

python humor/test/test_humor.py @./configs/test_humor_sampling_debug.cfg

Try adding --viz-pred-joints, --viz-smpl-joints, or --viz-contacts to the end of the command to visualize more outputs, or increasing the value of --eval-num-samples to sample the model multiple times from the same initial state. --help can always be used to see all flags and their descriptions.

Training Initial State GMM

Test-time optimization also uses a Gaussian mixture model (GMM) prior over the initial state of the sequence. The pretrained model can be downloaded above, but if you wish to train from scratch, run:

python humor/train/train_state_prior.py --data ./data/amass_processed --out ./out/init_state_prior_gmm --gmm-comps 12

Citation

If you found this code or paper useful, please consider citing:

@inproceedings{rempe2021humor,
    author={Rempe, Davis and Birdal, Tolga and Hertzmann, Aaron and Yang, Jimei and Sridhar, Srinath and Guibas, Leonidas J.},
    title={HuMoR: 3D Human Motion Model for Robust Pose Estimation},
    booktitle={International Conference on Computer Vision (ICCV)},
    year={2021}
}

Questions?

If you run into any problems or have questions, please create an issue or contact Davis (first author) via email.

Owner
Davis Rempe
Davis Rempe
Pytorch Implementation for NeurIPS (oral) paper: Pixel Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation

Pixel-Level Cycle Association This is the Pytorch implementation of our NeurIPS 2020 Oral paper Pixel-Level Cycle Association: A New Perspective for D

87 Oct 19, 2022
multimodal transformer

This repo holds the code to perform experiments with the multimodal autoregressive probabilistic model Transflower. Overview of the repo It is structu

Guillermo Valle 68 Dec 13, 2022
Python implementation of ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images, AAAI2022.

ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images Binh M. Le & Simon S. Woo, "ADD:

2 Oct 24, 2022
classification task on dataset-CIFAR10,by using Tensorflow/keras

CIFAR10-Tensorflow classification task on dataset-CIFAR10,by using Tensorflow/keras 在这一个库中,我使用Tensorflow与keras框架搭建了几个卷积神经网络模型,针对CIFAR10数据集进行了训练与测试。分别使

3 Oct 17, 2021
NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size Xuanyi Dong, Lu Liu, Katarzyna Musial, Bogdan Gabrys in IEEE Transactions o

D-X-Y 137 Dec 20, 2022
Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'

pytorch-inpainting-with-partial-conv Official implementation is released by the authors. Note that this is an ongoing re-implementation and I cannot f

Naoto Inoue 525 Jan 01, 2023
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
Multi-scale discriminator feature-wise loss function

Multi-Scale Discriminative Feature Loss This repository provides code for Multi-Scale Discriminative Feature (MDF) loss for image reconstruction algor

Graphics and Displays group - University of Cambridge 76 Dec 12, 2022
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN.

Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU.

Phil Wang 2.3k Jan 09, 2023
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022
Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

BBB Face Recognizer Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time. Instalati

Rafael Azevedo 232 Dec 24, 2022
Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

GRAF This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. You can find detailed usage i

349 Dec 29, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Zhejun Zhang 118 Dec 28, 2022
Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Do pedestrians pay attention? Eye contact detection for autonomous driving Official implementation of the paper Do pedestrians pay attention? Eye cont

VITA lab at EPFL 26 Nov 02, 2022
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

5 Nov 21, 2022
PyTorch implementation of EfficientNetV2

[NEW!] Check out our latest work involution accepted to CVPR'21 that introduces a new neural operator, other than convolution and self-attention. PyTo

Duo Li 375 Jan 03, 2023
This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (ICLR 2022)

Equivariant Subgraph Aggregation Networks (ESAN) This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (IC

Beatrice Bevilacqua 59 Dec 13, 2022
Simple node deletion tool for onnx.

snd4onnx Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs

Katsuya Hyodo 6 May 15, 2022