Simple embedding based text classifier inspired by fastText, implemented in tensorflow

Overview

FastText in Tensorflow

This project is based on the ideas in Facebook's FastText but implemented in Tensorflow. However, it is not an exact replica of fastText.

Classification is done by embedding each word, taking the mean embedding over the full text and classifying that using a linear classifier. The embedding is trained with the classifier. You can also specify to use 2+ character ngrams. These ngrams get hashed then embedded in a similar manner to the orginal words. Note, ngrams make training much slower but only make marginal improvements in performance, at least in English.

I may implement skipgram and cbow training later. Or preloading embedding tables.

<< Still WIP >>

You can use Horovod to distribute training across multiple GPUs, on one or multiple servers. See usage section below.

FastText Language Identification

I have added utilities to train a classifier to detect languages, as described in Fast and Accurate Language Identification using FastText

See usage below. It basically works in the same way as default usage.

Implemented:

  • classification of text using word embeddings
  • char ngrams, hashed to n bins
  • training and prediction program
  • serve models on tensorflow serving
  • preprocess facebook format, or text input into tensorflow records

Not Implemented:

  • separate word vector training (though can export embeddings)
  • heirarchical softmax.
  • quantize models (supported by tensorflow, but I haven't tried it yet)

Usage

The following are examples of how to use the applications. Get full help with --help option on any of the programs.

To transform input data into tensorflow Example format:

process_input.py --facebook_input=queries.txt --output_dir=. --ngrams=2,3,4

Or, using a text file with one example per line with an extra file for labels:

process_input.py --text_input=queries.txt --labels=labels.txt --output_dir=.

To train a text classifier:

classifier.py \
  --train_records=queries.tfrecords \
  --eval_records=queries.tfrecords \
  --label_file=labels.txt \
  --vocab_file=vocab.txt \
  --model_dir=model \
  --export_dir=model

To predict classifications for text, use a saved_model from classifier. classifier.py --export_dir stores a saved model in a numbered directory below export_dir. Pass this directory to the following to use that model for predictions:

predictor.py
  --saved_model=model/12345678
  --text="some text to classify"
  --signature_def=proba

To export the embedding layer you can export from predictor. Note, this will only be the text embedding, not the ngram embeddings.

predictor.py
  --saved_model=model/12345678
  --text="some text to classify"
  --signature_def=embedding

Use the provided script to train easily:

train_classifier.sh path-to-data-directory

Language Identification

To implement something similar to the method described in Fast and Accurate Language Identification using FastText you need to download the data:

lang_dataset.sh [datadir]

You can then process the training and validation data using process_input.py and classifier.py as described above.

There is a utility script to do this for you:

train_langdetect.sh datadir

It reaches about 96% accuracy using word embeddings and this increases to nearly 99% when adding --ngrams=2,3,4

Distributed Training

You can run training across multiple GPUs either on one or multiple servers. To do so you need to install MPI and Horovod then add the --horovod option. It runs very close to the GPU multiple in terms of performance. I.e. if you have 2 GPUs on your server, it should run close to 2x the speed.

NUM_GPUS=2
mpirun -np $NUM_GPUS python classifier.py \
  --horovod \
  --train_records=queries.tfrecords \
  --eval_records=queries.tfrecords \
  --label_file=labels.txt \
  --vocab_file=vocab.txt \
  --model_dir=model \
  --export_dir=model

The training script has this option added: train_classifier.sh.

Tensorflow Serving

As well as using predictor.py to run a saved model to provide predictions, it is easy to serve a saved model using Tensorflow Serving with a client server setup. There is a supplied simple rpc client (predictor_client.py) that provides predictions by using tensorflow server.

First make sure you install the tensorflow serving binaries. Instructions are here.

You then serve the latest saved model by supplying the base export directory where you exported saved models to. This directory will contain the numbered model directories:

tensorflow_model_server --port=9000 --model_base_path=model

Now you can make requests to the server using gRPC calls. An example simple client is provided in predictor_client.py:

predictor_client.py --text="Some text to classify"

Facebook Examples

<< NOT IMPLEMENTED YET >>

You can compare with Facebook's fastText by running similar examples to what's provided in their repository.

./classification_example.sh
./classification_results.sh
Owner
Alan Patterson
Alan Patterson
Introduction to Statistics and Basics of Mathematics for Data Science - The Hacker's Way

HackerMath for Machine Learning β€œStudy hard what interests you the most in the most undisciplined, irreverent and original manner possible.” ― Richard

Amit Kapoor 1.4k Dec 22, 2022
A Unified Framework and Analysis for Structured Knowledge Grounding

UnifiedSKG πŸ“š : Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models Code for paper UnifiedSKG: Unifying and Mu

HKU NLP Group 370 Dec 21, 2022
Autoencoder - Reducing the Dimensionality of Data with Neural Network

autoencoder Implementation of the Reducing the Dimensionality of Data with Neural Network – G. E. Hinton and R. R. Salakhutdinov paper. Notes Aim to m

Jordan Burgess 13 Nov 17, 2022
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022
No Code AI/ML platform

NoCodeAIML No Code AI/ML platform - Community Edition Video credits: Uday Kiran Typical No Code AI/ML Platform will have features like drag and drop,

Bhagvan Kommadi 5 Jan 28, 2022
VQGAN+CLIP Colab Notebook with user-friendly interface.

VQGAN+CLIP and other image generation system VQGAN+CLIP Colab Notebook with user-friendly interface. Latest Notebook: Mse regulized zquantize Notebook

Justin John 227 Jan 05, 2023
Wenzhou-Kean University AI-LAB

AI-LAB This is Wenzhou-Kean University AI-LAB. Our research interests are in Computer Vision and Natural Language Processing. Computer Vision Please g

WKU AI-LAB 10 May 05, 2022
Implementation of Stochastic Image-to-Video Synthesis using cINNs.

Stochastic Image-to-Video Synthesis using cINNs Official PyTorch implementation of Stochastic Image-to-Video Synthesis using cINNs accepted to CVPR202

CompVis Heidelberg 135 Dec 28, 2022
πŸ€– A Python library for learning and evaluating knowledge graph embeddings

PyKEEN PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-m

PyKEEN 1.1k Jan 09, 2023
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
Source codes for the paper "Local Additivity Based Data Augmentation for Semi-supervised NER"

LADA This repo contains codes for the following paper: Jiaao Chen*, Zhenghui Wang*, Ran Tian, Zichao Yang, Diyi Yang: Local Additivity Based Data Augm

GT-SALT 36 Dec 02, 2022
FTIR-Deep Learning - FTIR Deep Learning With Python

CANDIY-spectrum Human analyis of chemical spectra such as Mass Spectra (MS), Inf

Wei Mei 1 Jan 03, 2022
Categorizing comments on YouTube into different categories.

Youtube Comments Categorization This repo is for categorizing comments on a youtube video into different categories. negative (grievances, complaints,

Rhitik 5 Nov 26, 2022
Iowa Project - My second project done at General Assembly, focused on feature engineering and understanding Linear Regression as a concept

Project 2 - Ames Housing Data and Kaggle Challenge PROBLEM STATEMENT Inferring or Predicting? What's more valuable for a housing model? When creating

Adam Muhammad Klesc 1 Jan 03, 2022
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi

Zinan Lin 32 Dec 16, 2022
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Evelyn 78 Nov 29, 2022