scikit-multimodallearn is a Python package implementing algorithms multimodal data.

Overview
pipeline status coverage report

scikit-multimodallearn

scikit-multimodallearn is a Python package implementing algorithms multimodal data.

It is compatible with scikit-learn, a popular package for machine learning in Python.

Documentation

The documentation including installation instructions, API documentation and examples is available online.

Installation

Dependencies

scikit-multimodallearn works with Python 3.5 or later.

scikit-multimodallearn depends on scikit-learn (version >= 0.19).

Optionally, matplotlib is required to run the examples.

Installation using pip

scikit-multimodallearn is available on PyPI and can be installed using pip:

pip install scikit-multimodallearn

Development

The development of this package follows the guidelines provided by the scikit-learn community.

Refer to the Developer's Guide of the scikit-learn project for more details.

Source code

You can get the source code from the Git repository of the project:

git clone [email protected]:dev/multiconfusion.git

Testing

pytest and pytest-cov are required to run the test suite with:

cd multimodal
pytest

A code coverage report is displayed in the terminal when running the tests. An HTML version of the report is also stored in the directory htmlcov.

Generating the documentation

The generation of the documentation requires sphinx, sphinx-gallery, numpydoc and matplotlib and can be run with:

python setup.py build_sphinx

The resulting files are stored in the directory build/sphinx/html.

Credits

scikit-multimodallearn is developped by the development team of the LIS.

If you use scikit-multimodallearn in a scientific publication, please cite the following paper:

@InProceedings{Koco:2011:BAMCC,
 author={Ko\c{c}o, Sokol and Capponi, C{\'e}cile},
 editor={Gunopulos, Dimitrios and Hofmann, Thomas and Malerba, Donato
         and Vazirgiannis, Michalis},
 title={A Boosting Approach to Multiview Classification with Cooperation},
 booktitle={Proceedings of the 2011 European Conference on Machine Learning
            and Knowledge Discovery in Databases - Volume Part II},
 year={2011},
 location={Athens, Greece},
 publisher={Springer-Verlag},
 address={Berlin, Heidelberg},
 pages={209--228},
 numpages = {20},
 isbn={978-3-642-23783-6}
 url={https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14},
 keywords={boosting, classification, multiview learning,
           supervised learning},
}

@InProceedings{Huu:2019:BAMCC,
 author={Huusari, Riika, Kadri Hachem and Capponi, C{\'e}cile},
 editor={},
 title={Multi-view Metric Learning in Vector-valued Kernel Spaces},
 booktitle={arXiv:1803.07821v1},
 year={2018},
 location={Athens, Greece},
 publisher={},
 address={},
 pages={209--228},
 numpages = {12}
 isbn={978-3-642-23783-6}
 url={https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14},
 keywords={boosting, classification, multiview learning,
           merric learning, vector-valued, kernel spaces},
}

References

  • Sokol Koço, Cécile Capponi, "Learning from Imbalanced Datasets with cross-view cooperation" Linking and mining heterogeneous an multi-view data, Unsupervised and semi-supervised learning Series Editor M. Emre Celeri, pp 161-182, Springer
  • Sokol Koço, Cécile Capponi, "A boosting approach to multiview classification with cooperation", Proceedings of the 2011 European Conference on Machine Learning (ECML), Athens, Greece, pp.209-228, 2011, Springer-Verlag.
  • Sokol Koço, "Tackling the uneven views problem with cooperation based ensemble learning methods", PhD Thesis, Aix-Marseille Université, 2013.
  • Riikka Huusari, Hachem Kadri and Cécile Capponi, "Multi-View Metric Learning in Vector-Valued Kernel Spaces" in International Conference on Artificial Intelligence and Statistics (AISTATS) 2018

Copyright

Université d'Aix Marseille (AMU) - Centre National de la Recherche Scientifique (CNRS) - Université de Toulon (UTLN).

Copyright © 2017-2018 AMU, CNRS, UTLN

License

scikit-multimodallearn is free software: you can redistribute it and/or modify it under the terms of the New BSD License

Deploy AutoML as a service using Flask

AutoML Service Deploy automated machine learning (AutoML) as a service using Flask, for both pipeline training and pipeline serving. The framework imp

Chris Rawles 221 Nov 04, 2022
Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Thines Kumar 1 Jan 31, 2022
Official code for HH-VAEM

HH-VAEM This repository contains the official Pytorch implementation of the Hierarchical Hamiltonian VAE for Mixed-type Data (HH-VAEM) model and the s

Ignacio Peis 8 Nov 30, 2022
SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker.

SageMaker Python SDK SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker. With the S

Amazon Web Services 1.8k Jan 01, 2023
Educational python for Neural Networks, written in pure Python/NumPy.

Educational python for Neural Networks, written in pure Python/NumPy.

127 Oct 27, 2022
Scikit-Learn useful pre-defined Pipelines Hub

Scikit-Pipes Scikit-Learn useful pre-defined Pipelines Hub Usage: Install scikit-pipes It's advised to install sklearn-genetic using a virtual env, in

Rodrigo Arenas 1 Apr 26, 2022
Pytools is an open source library containing general machine learning and visualisation utilities for reuse

pytools is an open source library containing general machine learning and visualisation utilities for reuse, including: Basic tools for API developmen

BCG Gamma 26 Nov 06, 2022
Machine Learning Course with Python:

A Machine Learning Course with Python Table of Contents Download Free Deep Learning Resource Guide Slack Group Introduction Motivation Machine Learnin

Instill AI 6.9k Jan 03, 2023
To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction

To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction. The challenge aims to adress the problems of medical imbalanced data classification.

Marwan Mashra 1 Jan 31, 2022
A scikit-learn based module for multi-label et. al. classification

scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth

802 Jan 01, 2023
A python library for Bayesian time series modeling

PyDLM Welcome to pydlm, a flexible time series modeling library for python. This library is based on the Bayesian dynamic linear model (Harrison and W

Sam 438 Dec 17, 2022
Machine learning that just works, for effortless production applications

Machine learning that just works, for effortless production applications

Elisha Yadgaran 16 Sep 02, 2022
Flightfare-Prediction - It is a Flightfare Prediction Web Application Using Machine learning,Python and flask

Flight_fare-Prediction It is a Flight_fare Prediction Web Application Using Machine learning,Python and flask Using Machine leaning i have created a F

1 Dec 06, 2022
Data from "Datamodels: Predicting Predictions with Training Data"

Data from "Datamodels: Predicting Predictions with Training Data" Here we provid

Madry Lab 51 Dec 09, 2022
Azure MLOps (v2) solution accelerators.

Azure MLOps (v2) solution accelerator Welcome to the MLOps (v2) solution accelerator repository! This project is intended to serve as the starting poi

Microsoft Azure 233 Jan 01, 2023
Machine Learning University: Accelerated Natural Language Processing Class

Machine Learning University: Accelerated Natural Language Processing Class This repository contains slides, notebooks and datasets for the Machine Lea

AWS Samples 2k Jan 01, 2023
Real-time stream processing for python

Streamz Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelin

Python Streamz 1.1k Dec 28, 2022
Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogramas anuais com spark, em pyspark e SQL!

Olá! Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogr

Henrique de Paula 10 Apr 04, 2022
Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library

Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library

Kushal Shingote 1 Feb 06, 2022
MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine Learning work with thousands of other users.

The collaboration platform for Machine Learning MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine

MLReef 1.4k Dec 27, 2022