A naive Bayes model for cancer classification using a set of documents

Overview

Naivebayes text classifcation model for cancer and noncancer documents

Author: Alex King


  1. Purpose
  2. Requirements/files included
  3. How to use

1. Purpose

The Purpose of this program is to read in from csv files containing two columns:
                    Document | classifcation
                    xxxxxx   | cancer/nocancer
                    xxxxxx   | cancer/nocancer
                    xxxxxx   | cancer/nocancer

This program uses the data to read into classes containing each documents one file is used as the training set, and the other as the testing set. Each set goes through the same tokenization. From there one is trained and the other is tested.

2. Requirements/files used

* python3 * numpy library - for calculating log * pandas library - for reading in csv files * main.py and naivesbayes.py * stopwords.txt - list of stop words * Scoring.docx - list of scoring for precsion, Recall, F-score

3. How to use

This program has 3 modes of operation for tokenizing your sets:
                $python3 main.py -train 1 -test 1 

This first command will execute std tokenization on training set 1 and test set 1. To change which training set just change the 1 into a 2.

                $python3 main.py -train 2 -test 1 

#NOTE do not change testing set number leave it as 1 it was intended for multiple testing sets

For binary:

                $python3 main.py -train # -test 1 -b

For stopwords:

                $python3 main.py -train # -test 1 -s

For both stopwords and binary:

                $python3 main.py -train # -test 1 -b -s
Owner
Alex W King
Alex W King
Winning solution for the Galaxy Challenge on Kaggle

Winning solution for the Galaxy Challenge on Kaggle

Sander Dieleman 483 Jan 02, 2023
A comprehensive repository containing 30+ notebooks on learning machine learning!

A comprehensive repository containing 30+ notebooks on learning machine learning!

Jean de Dieu Nyandwi 3.8k Jan 09, 2023
Mortality risk prediction for COVID-19 patients using XGBoost models

Mortality risk prediction for COVID-19 patients using XGBoost models Using demographic and lab test data received from the HM Hospitales in Spain, I b

1 Jan 19, 2022
Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc)

Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc). Structured a custom ensemble model and a neural network. Found a outperformed

Chris Yuan 1 Feb 06, 2022
Houseprices - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

1 Jan 01, 2022
Simple linear model implementations from scratch.

Hand Crafted Models Simple linear model implementations from scratch. Table of contents Overview Project Structure Getting started Citing this project

Jonathan Sadighian 2 Sep 13, 2021
distfit - Probability density fitting

Python package for probability density function fitting of univariate distributions of non-censored data

Erdogan Taskesen 187 Dec 30, 2022
GroundSeg Clustering Optimized Kdtree

ground seg and clustering based on kitti velodyne data, and a additional optimized kdtree for knn and radius nn search

2 Dec 02, 2021
A Tools that help Data Scientists and ML engineers train and deploy ML models.

Domino Research This repo contains projects under active development by the Domino R&D team. We build tools that help Data Scientists and ML engineers

Domino Data Lab 73 Oct 17, 2022
Accelerating model creation and evaluation.

EmeraldML A machine learning library for streamlining the process of (1) cleaning and splitting data, (2) training, optimizing, and testing various mo

Yusuf 0 Dec 06, 2021
This project used bitcoin, S&P500, and gold to construct an investment portfolio that aimed to minimize risk by minimizing variance.

minvar_invest_portfolio This project used bitcoin, S&P500, and gold to construct an investment portfolio that aimed to minimize risk by minimizing var

1 Jan 06, 2022
XAI - An eXplainability toolbox for machine learning

XAI - An eXplainability toolbox for machine learning XAI is a Machine Learning library that is designed with AI explainability in its core. XAI contai

The Institute for Ethical Machine Learning 875 Dec 27, 2022
ML Optimizers from scratch using JAX

Toy implementations of some popular ML optimizers using Python/JAX

Shreyansh Singh 38 Jul 29, 2022
Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

FINRA 25 Dec 28, 2022
Penguins species predictor app is used to classify penguins species created using python's scikit-learn, fastapi, numpy and joblib packages.

Penguins Classification App Penguins species predictor app is used to classify penguins species using their island, sex, bill length (mm), bill depth

Siva Prakash 3 Apr 05, 2022
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.

Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear

23.3k Dec 31, 2022
A Pythonic framework for threat modeling

pytm: A Pythonic framework for threat modeling Introduction Traditional threat modeling too often comes late to the party, or sometimes not at all. In

Izar Tarandach 644 Dec 20, 2022
Factorization machines in python

Factorization Machines in Python This is a python implementation of Factorization Machines [1]. This uses stochastic gradient descent with adaptive re

Corey Lynch 892 Jan 03, 2023
List of Data Science Cheatsheets to rule the world

Data Science Cheatsheets List of Data Science Cheatsheets to rule the world. Table of Contents Business Science Business Science Problem Framework Dat

Favio André Vázquez 11.7k Dec 30, 2022
Mixing up the Invariant Information clustering architecture, with self supervised concepts from SimCLR and MoCo approaches

Self Supervised clusterer Combined IIC, and Moco architectures, with some SimCLR notions, to get state of the art unsupervised clustering while retain

Bendidi Ihab 9 Feb 13, 2022