Deep Distributed Control of Port-Hamiltonian Systems

Overview

De(e)pendable Distributed Control of Port-Hamiltonian Systems (DeepDisCoPH)

This repository is associated to the paper [1] and it contains:

  1. The full paper manuscript.
  2. The code to reproduce numerical experiments.

Summary

By embracing the compositional properties of port-Hamiltonian (pH) systems, we characterize deep Hamiltonian control policies with built-in closed-loop stability guarantees — irrespective of the interconnection topology and the chosen neural network parameters. Furthermore, our setup enables leveraging recent results on well-behaved neural ODEs to prevent the phenomenon of vanishing gradients by design [2]. The numerical experiments described in the report and available in this repository corroborate the dependability of the proposed DeepDisCoPH architecture, while matching the performance of general neural network policies.

Report

The report as well as the corresponding Appendices can be found in the docs folder.

Installation of DeepDisCoPH

The following lines indicates how to install the Deep Distributed Control for Port-Hamiltonian Systems (DeepDisCoPH) package.

git clone https://github.com/DecodEPFL/DeepDisCoPH.git

cd DeepDisCoPH

python setup.py install

Basic usage

To train distributed controllers for the 12 robots in the xy-plane:

./run.py --model [MODEL]

where available values for MODEL are distributed_HDNN, distributed_HDNN_TI and distributed_MLP.

To plot the norms of the backward sensitivity matrices (BSMs) when training a distributed H-DNN as the previous example, run:

./bsm.py --layer [LAYER]

where available values for LAYER are 1,2,...,100. If LAYER=-1, then it is set to N. The LAYER parameter indicates the layer number at which we consider the loss function is evaluated.

Examples: formation control with collision avoidance

The following gifs show the trajectories of the robots before and after the training of a distributed H-DNN controller. The goal is to reach the target positions within T = 5 seconds while avoiding collisions.

robot_trajectories_before_training robot_trajectories_after_training_a_distributed_HDNN_controller

Training performed for t in [0,5]. Trajectories shown for t in [0,6], highlighting that robots stay close to the desired position when the time horizon is extended (grey background).

Early stopping of the training

We verify that DeepDisCoPH controllers ensure closed-loop stability by design even during exploration. We train the DeepDisCoPH controller for 25%, 50% and 75% of the total number of iterations and report the results in the following gifs.

robot_trajectories_25_training robot_trajectories_50_training robot_trajectories_75_training

Training performed for t in [0,5]. Trajectories shown for t in [0,15]. The extended horizon, i.e. when t in [5,15], is shown with grey background. Partially trained distributed controllers exhibit suboptimal behavior, but never compromise closed-loop stability.

References

[1] Luca Furieri, Clara L. Galimberti, Muhammad Zakwan and Giancarlo Ferrrari Trecate. "Distributed neural network control with dependability guarantees: a compositional port-Hamiltonian approach", under review.

[2] Clara L. Galimberti, Luca Furieri, Liang Xu and Giancarlo Ferrrari Trecate. "Hamiltonian Deep Neural Networks Guaranteeing Non-vanishing Gradients by Design," arXiv:2105.13205, 2021.

Owner
Dependable Control and Decision group - EPFL
Dependable Control and Decision group - EPFL
Deep metric learning methods implemented in Chainer

Deep Metric Learning Implementation of several methods for deep metric learning in Chainer v4.2.0. Proxy-NCA: No Fuss Distance Metric Learning using P

ronekko 156 Nov 28, 2022
Supporting code for the Neograd algorithm

Neograd This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper an

Michael Zimmer 12 May 01, 2022
Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Implicit3DUnderstanding (Im3D) [Project Page] Holistic 3D Scene Understanding from a Single Image with Implicit Representation Cheng Zhang, Zhaopeng C

Cheng Zhang 149 Jan 08, 2023
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
A LiDAR point cloud cluster for panoptic segmentation

Divide-and-Merge-LiDAR-Panoptic-Cluster A demo video of our method with semantic prior: More information will be coming soon! As a PhD student, I don'

YimingZhao 65 Dec 22, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
PSPNet in Chainer

PSPNet This is an unofficial implementation of Pyramid Scene Parsing Network (PSPNet) in Chainer. Training Requirement Python 3.4.4+ Chainer 3.0.0b1+

Shunta Saito 76 Dec 12, 2022
GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks

GPU-accelerated PyTorch implementation of Zero-shot User Intent Detection via Capsule Neural Networks This repository implements a capsule model Inten

Joel Huang 15 Dec 24, 2022
Code for "Reconstructing 3D Human Pose by Watching Humans in the Mirror", CVPR 2021 oral

Reconstructing 3D Human Pose by Watching Humans in the Mirror Qi Fang*, Qing Shuai*, Junting Dong, Hujun Bao, Xiaowei Zhou CVPR 2021 Oral The videos a

ZJU3DV 178 Dec 13, 2022
Reimplementation of the paper "Attention, Learn to Solve Routing Problems!" in jax/flax.

JAX + Attention Learn To Solve Routing Problems Reinplementation of the paper Attention, Learn to Solve Routing Problems! using Jax and Flax. Fully su

Gabriela Surita 7 Dec 01, 2022
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
Pytorch implementation of the AAAI 2022 paper "Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification"

[AAAI22] Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification We point out the overlooked unbiasedness in long-tailed clas

PatatiPatata 28 Oct 18, 2022
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Context Terms

LESA Introduction This repository contains the official implementation of Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Cont

Chenglin Yang 20 Dec 31, 2021
End-To-End Optimization of LiDAR Beam Configuration

End-To-End Optimization of LiDAR Beam Configuration arXiv | IEEE Xplore This repository is the official implementation of the paper: End-To-End Optimi

Niclas 30 Nov 28, 2022
SARS-Cov-2 Recombinant Finder for fasta sequences

Sc2rf - SARS-Cov-2 Recombinant Finder Pronounced: Scarf What's this? Sc2rf can search genome sequences of SARS-CoV-2 for potential recombinants - new

Lena Schimmel 41 Oct 03, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022