Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification

Overview

About subwAI

subwAI - a project for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification.

For this project, I made use of a supervised machine learning approach. I provided the ground truth data by playing the game and saving images with the corresponding action that was taken during the respective frame (jump, roll, left, right, noop) and in order for the AI to best imitate my playing style I used a convolutional neural network (CNN) with several layers (convolution, average pooling, dense layer, dropout, output), which gave me a good accuracy of 85% for it's predictions. After augmenting the data (mirroring, which resulted in a dataset twice as big) the model seemed to give even more robust results, when letting it play the game. Ultimately the model managed to finish runs of over a minute regularly and it safely handles the usual obstacles seen in the game. Moreover, the AI - with it's unconvential behavior - discovered a game-changing glitch.

More on all this can be seen in my video on YouTube.

thumb4

Description/Usage

This repository contains everything that is needed for building an AI that plays Subway Surfers. With the provided scripts you can...

  • build a dataset by playing the game while running py ai.py gather (takes rapid screenshots of the game and saves images in respective folders ['down', 'left', 'noop', 'right', 'up'] in the folder 'images'); press 'q' or 'esc' to quit
  • train the specified model defined in get_model() on existing dataset running py ai.py train; add load <image_width> to use a preloaded dataset for the respective image_width provided it has been saved before
  • augment the existing dataset by flipping every image and adjust the label (flipped image in 'left' needs to be changed to 'right') by running py dataset_augmentation.py
  • have a look at what your trained model is doing under the hood with py image_check.py to see individual predictions for images and change labels when needed (press 'y' to move on to next image; 'n' to delete image; 'w' to move image to 'up'-folder; 'a' to move image to 'left'-folder; 's' to move image to 'down'-folder; 'd' to move image to 'right'-folder)
  • if order of images is changed run py image_sort.py in order to bring everything in order again
  • AND MOST IMPORTANTLY run py ai.py play to let the trained model play the game; press 'q' or 'esc' to quit; press 'y' to save a screen recording after the run and 'n' to not save it; add auto as a command line argument to have the program automatically save recordings of runs longer than 40 seconds

Also...

  • in the folder 'recordings' you can view the saved screen captures and see the predictions for each individual frame as well as the frame rate
  • in the folder 'models' your trained models are saved; while the Sequential() model (convolutional neural network with layers defined in get_model()) gives the best results you can also try other more simplistic machine learning models such as [KNeighborsClassifier(n_neighbors=5), GaussianNB(), Perceptron()]
  • visualizations of the CNN-architecture and details regarding layer configurations as well as the accuracy and loss of the model is saved in models\Sequential

ezgif com-gif-maker

Owner
sports engineer, self-taught programmer, interested in game dev and machine learning
Code for the AAAI-2022 paper: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification (AAAI 2022) Prerequisite PyTorch = 1.2.0 P

16 Dec 14, 2022
Winning solution of the Indoor Location & Navigation Kaggle competition

This repository contains the code to generate the winning solution of the Kaggle competition on indoor location and navigation organized by Microsoft

Tom Van de Wiele 62 Dec 28, 2022
Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos Official implementation for Multi-Modal Interaction Gr

Zongmeng Zhang 15 Oct 18, 2022
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

770 Jan 02, 2023
[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts

Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.

45 Nov 30, 2022
JAX code for the paper "Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation"

Optimal Model Design for Reinforcement Learning This repository contains JAX code for the paper Control-Oriented Model-Based Reinforcement Learning wi

Evgenii Nikishin 43 Sep 28, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
Google Brain - Ventilator Pressure Prediction

Google Brain - Ventilator Pressure Prediction https://www.kaggle.com/c/ventilator-pressure-prediction The ventilator data used in this competition was

Samuele Cucchi 1 Feb 11, 2022
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation

Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation Woncheol Shin1, Gyubok Lee1, Jiyoung Lee1, Joonseok Lee2,3, Edward Ch

Woncheol Shin 7 Sep 26, 2022
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
Unofficial implementation of PatchCore anomaly detection

PatchCore anomaly detection Unofficial implementation of PatchCore(new SOTA) anomaly detection model Original Paper : Towards Total Recall in Industri

Changwoo Ha 268 Dec 22, 2022
[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations

CrowdNav with Social-NCE This is an official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations by

VITA lab at EPFL 125 Dec 23, 2022
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss This repository contains the TensorFlow implementation of the paper UnF

Simon Meister 270 Nov 06, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
The Python3 import playground

The Python3 import playground I have been confused about python modules and packages, this text tries to clear the topic up a bit. Sources: https://ch

Michael Moser 5 Feb 22, 2022
Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather

LiDAR fog simulation Created by Martin Hahner at the Computer Vision Lab of ETH Zurich. This is the official code release of the paper Fog Simulation

Martin Hahner 110 Dec 30, 2022