DeepMind Alchemy task environment: a meta-reinforcement learning benchmark

Overview

dm_alchemy: DeepMind Alchemy environment

Overview | Requirements | Installation | Usage | Documentation | Tutorial | Paper | Blog post

The DeepMind Alchemy environment is a meta-reinforcement learning benchmark that presents tasks sampled from a task distribution with deep underlying structure. It was created to test for the ability of agents to reason and plan via latent state inference, as well as useful exploration and experimentation. It is Unity-based.

Overview

This environment is provided through pre-packaged Docker containers.

This package consists of support code to run these Docker containers. You interact with the task environment via a dm_env Python interface.

Please see the documentation for more detailed information on the available tasks, actions and observations.

Requirements

dm_alchemy requires Docker, Python 3.6.1 or later and a x86-64 CPU with SSE4.2 support. We do not attempt to maintain a working version for Python 2.

Alchemy is intended to be run on Linux and is not officially supported on Mac and Windows. However, it can in principle be run on any platform (though installation may be more of a headache). In particular, on Windows, you will need to install and run Alchemy with WSL.

Note: We recommend using Python virtual environment to mitigate conflicts with your system's Python environment.

Download and install Docker:

Ensure that docker is working correctly by running docker run -d gcr.io/deepmind-environments/alchemy:v1.0.0.

Installation

You can install dm_alchemy by cloning a local copy of our GitHub repository:

$ git clone https://github.com/deepmind/dm_alchemy.git
$ pip install wheel
$ pip install --upgrade setuptools
$ pip install ./dm_alchemy

To also install the dependencies for the examples/, install with:

$ pip install ./dm_alchemy[examples]

Usage

Once dm_alchemy is installed, to instantiate a dm_env instance run the following:

import dm_alchemy

LEVEL_NAME = ('alchemy/perceptual_mapping_'
              'randomized_with_rotation_and_random_bottleneck')
settings = dm_alchemy.EnvironmentSettings(seed=123, level_name=LEVEL_NAME)
env = dm_alchemy.load_from_docker(settings)

For more details see the introductory colab.

Open in colab

Citing Alchemy

If you use Alchemy in your work, please cite the accompanying technical report:

@article{wang2021alchemy,
    title={Alchemy: A structured task distribution for meta-reinforcement learning},
    author={Jane Wang and Michael King and Nicolas Porcel and Zeb Kurth-Nelson
        and Tina Zhu and Charlie Deck and Peter Choy and Mary Cassin and
        Malcolm Reynolds and Francis Song and Gavin Buttimore and David Reichert
        and Neil Rabinowitz and Loic Matthey and Demis Hassabis and Alex Lerchner
        and Matthew Botvinick},
    year={2021},
    journal={arXiv preprint arXiv:2102.02926},
    url={https://arxiv.org/abs/2102.02926},
}

Notice

This is not an officially supported Google product.

Owner
DeepMind
DeepMind
Tf alloc - Simplication of GPU allocation for Tensorflow2

tf_alloc Simpliying GPU allocation for Tensorflow Developer: korkite (Junseo Ko)

Junseo Ko 3 Feb 10, 2022
Pytorch implementation of Zero-DCE++

Zero-DCE++ You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE++.html. You can find the details of our CVPR version: https://li

Chongyi Li 157 Dec 23, 2022
scikit-learn inspired API for CRFsuite

sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides interface simlar to scikit-learn. sklearn_crfsuite.CRF i

417 Dec 20, 2022
Repo for 2021 SDD assessment task 2, by Felix, Anna, and James.

SoftwareTask2 Repo for 2021 SDD assessment task 2, by Felix, Anna, and James. File/folder structure: helloworld.py - demonstrates various map backgrou

3 Dec 13, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
Modification of convolutional neural net "UNET" for image segmentation in Keras framework

ZF_UNET_224 Pretrained Model Modification of convolutional neural net "UNET" for image segmentation in Keras framework Requirements Python 3.*, Keras

209 Nov 02, 2022
Concept drift monitoring for HA model servers.

{Fast, Correct, Simple} - pick three Easily compare training and production ML data & model distributions Goals Boxkite is an instrumentation library

98 Dec 15, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

Project This repo has been populated by an initial template to help get you started. Please make sure to update the content to build a great experienc

Microsoft 674 Dec 26, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Zhengxia Zou 1.5k Dec 28, 2022
PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations.

HPNet This repository contains the PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations. Installation The

Siming Yan 42 Dec 07, 2022
Python scripts for performing stereo depth estimation using the HITNET Tensorflow model.

HITNET-Stereo-Depth-estimation Python scripts for performing stereo depth estimation using the HITNET Tensorflow model from Google Research. Stereo de

Ibai Gorordo 76 Jan 02, 2023
Code for Environment Dynamics Decomposition (ED2).

ED2 Code for Environment Dynamics Decomposition (ED2). Installation Follow the installation in MBPO and Dreamer. Usage First follow the SD2 method for

0 Aug 10, 2021
Face Alignment using python

Face Alignment Face Alignment using python Input Image Aligned Face Aligned Face Aligned Face Input Image Aligned Face Input Image Aligned Face Instal

Sajjad Aemmi 28 Nov 23, 2022
Tooling for the Common Objects In 3D dataset.

CO3D: Common Objects In 3D This repository contains a set of tools for working with the Common Objects in 3D (CO3D) dataset. Download the dataset The

Facebook Research 724 Jan 06, 2023
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep

Fu Yuqian 44 Nov 18, 2022
VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries

VACA Code repository for the paper "VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries (arXiv)". The impleme

Pablo Sánchez-Martín 16 Oct 10, 2022
My implementation of Image Inpainting - A deep learning Inpainting model

Image Inpainting What is Image Inpainting Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within ima

Joshua V Evans 1 Dec 12, 2021
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion. NÜWA is a unified multimodal p

Microsoft 2.6k Jan 06, 2023