Pytorch implementation of Zero-DCE++

Overview

Zero-DCE++

You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE++.html.

You can find the details of our CVPR version: https://li-chongyi.github.io/Proj_Zero-DCE.html.

If you use this code, please cite our paper. Please hit the star at the top-right corner. Thanks!

Pytorch

Pytorch implementation of Zero-DCE++

Requirements

  1. Python 3.7
  2. Pytorch 1.0.0
  3. opencv
  4. torchvision 0.2.1
  5. cuda 10.0

Zero-DCE++ does not need special configurations. Just basic environment.

Or you can create a conda environment to run our code like this: conda create --name zerodce++_env opencv pytorch==1.0.0 torchvision==0.2.1 cuda100 python=3.7 -c pytorch

Folder structure

Download the Zero-DCE++ first. The following shows the basic folder structure.


├── data
│   ├── test_data 
│   └── train_data 
├── lowlight_test.py # testing code
├── lowlight_train.py # training code
├── model.py # Zero-DEC++ network
├── dataloader.py
├── snapshots_Zero_DCE++
│   ├── Epoch99.pth #  A pre-trained snapshot (Epoch99.pth)

Test:

cd Zero-DCE++

python lowlight_test.py 

The script will process the images in the sub-folders of "test_data" folder and make a new folder "result" in the "data". You can find the enhanced images in the "result" folder.

Train:

cd Zero-DCE++

python lowlight_train.py 

License

The code is made available for academic research purpose only. This project is open sourced under MIT license.

Bibtex

@inproceedings{Zero-DCE++,
 author = {Li, Chongyi and Guo, Chunle Guo and Loy, Chen Change},
 title = {Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation},
 booktitle = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
 pages    = {},
 month = {},
 year = {2021}
 doi={10.1109/TPAMI.2021.3063604}
}

(Full paper: https://ieeexplore.ieee.org/document/9369102 or arXiv version: https://arxiv.org/abs/2103.00860)

Contact

If you have any questions, please contact Chongyi Li at [email protected] or Chunle Guo at [email protected].

Owner
Chongyi Li
Chongyi Li
Non-Official Pytorch implementation of "Face Identity Disentanglement via Latent Space Mapping" https://arxiv.org/abs/2005.07728 Using StyleGAN2 instead of StyleGAN

Face Identity Disentanglement via Latent Space Mapping - Implement in pytorch with StyleGAN 2 Description Pytorch implementation of the paper Face Ide

Daniel Roich 58 Dec 24, 2022
InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

Deep Insight 13.2k Jan 06, 2023
A TikTok-like recommender system for GitHub repositories based on Gorse

GitRec GitRec is the missing recommender system for GitHub repositories based on Gorse. Architecture The trending crawler crawls trending repositories

337 Jan 04, 2023
Compact Bilinear Pooling for PyTorch

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
Near-Duplicate Video Retrieval with Deep Metric Learning

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

2 Jan 24, 2022
Pun Detection and Location

Pun Detection and Location “The Boating Store Had Its Best Sail Ever”: Pronunciation-attentive Contextualized Pun Recognition Yichao Zhou, Jyun-yu Jia

lawson 3 May 13, 2022
Deep learning for spiking neural networks

A deep learning library for spiking neural networks. Norse aims to exploit the advantages of bio-inspired neural components, which are sparse and even

Electronic Vision(s) Group — BrainScaleS Neuromorphic Hardware 59 Nov 28, 2022
Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation.

AVATAR Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation. AVATAR stands for jAVA-pyThon progrAm tRanslation. AV

Wasi Ahmad 26 Dec 03, 2022
(CVPR2021) DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation

DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation CVPR2021(oral) [arxiv] Requirements python3.7 pytorch==

W-zx-Y 85 Dec 07, 2022
ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D Data

ARKitScenes This repo accompanies the research paper, ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D

Apple 371 Jan 05, 2023
nfelo: a power ranking, prediction, and betting model for the NFL

nfelo nfelo is a power ranking, prediction, and betting model for the NFL. Nfelo take's 538's Elo framework and further adapts it for the NFL, hence t

6 Nov 22, 2022
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
Code for Mesh Convolution Using a Learned Kernel Basis

Mesh Convolution This repository contains the implementation (in PyTorch) of the paper FULLY CONVOLUTIONAL MESH AUTOENCODER USING EFFICIENT SPATIALLY

Yi_Zhou 35 Jan 03, 2023
Pytorch Implementation of Various Point Transformers

Pytorch Implementation of Various Point Transformers Recently, various methods applied transformers to point clouds: PCT: Point Cloud Transformer (Men

Neil You 434 Dec 30, 2022
This a classic fintech problem that introduces real life difficulties such as data imbalance. Check out the notebook to find out more!

Credit Card Fraud Detection Introduction Online transactions have become a crucial part of any business over the years. Many of those transactions use

Jonathan Hasbani 0 Jan 20, 2022
Bu repo SAHI uygulamasını mantığını öğreniyoruz.

SAHI-Learn: SAHI'den Beraber Kodlamak İster Misiniz Herkese merhabalar ben Kadir Nar. SAHI kütüphanesine gönüllü geliştiriciyim. Bu repo SAHI kütüphan

Kadir Nar 11 Aug 22, 2022
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt

Vaibhav Balloli 320 Jan 02, 2023
Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets' Paper Original paper can be found here Data

Tom Lieberum 38 Aug 09, 2022
The official repository for "Score Transformer: Generating Musical Scores from Note-level Representation" (MMAsia '21)

Score Transformer This is the official repository for "Score Transformer": Score Transformer: Generating Musical Scores from Note-level Representation

22 Dec 22, 2022
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022