Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP

Overview

Wav2CLIP

🚧 WIP 🚧

Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP 📄 🔗

Ho-Hsiang Wu, Prem Seetharaman, Kundan Kumar, Juan Pablo Bello

We propose Wav2CLIP, a robust audio representation learning method by distilling from Contrastive Language-Image Pre-training (CLIP). We systematically evaluate Wav2CLIP on a variety of audio tasks including classification, retrieval, and generation, and show that Wav2CLIP can outperform several publicly available pre-trained audio representation algorithms. Wav2CLIP projects audio into a shared embedding space with images and text, which enables multimodal applications such as zero-shot classification, and cross-modal retrieval. Furthermore, Wav2CLIP needs just ~10% of the data to achieve competitive performance on downstream tasks compared with fully supervised models, and is more efficient to pre-train than competing methods as it does not require learning a visual model in concert with an auditory model. Finally, we demonstrate image generation from Wav2CLIP as qualitative assessment of the shared embedding space. Our code and model weights are open sourced and made available for further applications.

Installation

pip install wav2clip

Usage

Clip-Level Embeddings

import wav2clip

model = wav2clip.get_model()
embeddings = wav2clip.embed_audio(audio, model)

Frame-Level Embeddings

import wav2clip

model = wav2clip.get_model(frame_length=16000, hop_length=16000)
embeddings = wav2clip.embed_audio(audio, model)
Comments
  • request of projection layer weight

    request of projection layer weight

    Hi @hohsiangwu , Thanks for great work! Request pre-trained weights of image_transform (MLP layer) for audio-image-language joint embedding space.

    Currently, only audio encoders seem to exist in the get_model function. Is there any big problem if I use CLIP embedding (text or image) without projection layer?

    opened by SeungHeonDoh 2
  • Initial checkin for accessing pre-trained model via pip install

    Initial checkin for accessing pre-trained model via pip install

    I am considering using the release feature of GitHub to host model weights, once the url is added to MODEL_WEIGHTS_URL, and the repository is made public, we should be able to model = torch.hub.load('descriptinc/lyrebird-wav2clip', 'wav2clip', pretrained=True)

    opened by hohsiangwu 1
  • Adding VQGAN-CLIP with modification to generate audio

    Adding VQGAN-CLIP with modification to generate audio

    • Adding a working snapshot of original generate.py from https://github.com/nerdyrodent/VQGAN-CLIP/
    • Modify to add audio related params and functions
    • Add scripts to generate image and video with options for conditioning and interpolation
    opened by hohsiangwu 0
  • Supervised scenario no transform

    Supervised scenario no transform

    In the supervise scenario in the __init__.py the transform flag is not set to True, so the model doesn't contain the MLP layer after training. I'm wondering how you train the MLP layer when using as pretrained.

    opened by alirezadir 0
  • Integrated into VQGAN+CLIP 3D Zooming notebook

    Integrated into VQGAN+CLIP 3D Zooming notebook

    Dear researchers,

    I integrated Wav2CLIP into a VQGAN+CLIP animation notebook.

    It is available on colab here: https://colab.research.google.com/github/pollinations/hive/blob/main/notebooks/2%20Text-To-Video/1%20CLIP-Guided%20VQGAN%203D%20Turbo%20Zoom.ipynb

    I'm part of a team creating an open-source generative art platform called Pollinations.AI. It's also possible to use through our frontend if you are interested. https://pollinations.ai/p/QmT7yt67DF3GF4wd2vyw6bAgN3QZx7Xpnoyx98YWEsEuV7/create

    Here is an example output: https://user-images.githubusercontent.com/5099901/168467451-f633468d-e596-48f5-8c2c-2dc54648ead3.mp4

    opened by voodoohop 0
  • The details concerning loading raw audio files

    The details concerning loading raw audio files

    Hi !

    I haved imported the wave2clip as a package, however when testing, the inputs for the model to extract features are not original audio files. Thus can you provided the details to load the audio files to processed data for the model?

    opened by jinx2018 0
  • torch version

    torch version

    Hi, thanks for sharing the wonderful work! I encountered some issues during pip installing it, so may I ask what is the torch version you used? I cannot find the requirement of this project. Thanks!

    opened by annahung31 0
  • Error when importing after fresh installation on colab

    Error when importing after fresh installation on colab

    What CUDA and Python versions have you tested the pip package in? After installation on a fresh collab I receive the following error:


    OSError Traceback (most recent call last) in () ----> 1 import wav2clip

    7 frames /usr/local/lib/python3.7/dist-packages/wav2clip/init.py in () 2 import torch 3 ----> 4 from .model.encoder import ResNetExtractor 5 6

    /usr/local/lib/python3.7/dist-packages/wav2clip/model/encoder.py in () 4 from torch import nn 5 ----> 6 from .resnet import BasicBlock 7 from .resnet import ResNet 8

    /usr/local/lib/python3.7/dist-packages/wav2clip/model/resnet.py in () 3 import torch.nn as nn 4 import torch.nn.functional as F ----> 5 import torchaudio 6 7

    /usr/local/lib/python3.7/dist-packages/torchaudio/init.py in () ----> 1 from torchaudio import _extension # noqa: F401 2 from torchaudio import ( 3 compliance, 4 datasets, 5 functional,

    /usr/local/lib/python3.7/dist-packages/torchaudio/_extension.py in () 25 26 ---> 27 _init_extension()

    /usr/local/lib/python3.7/dist-packages/torchaudio/_extension.py in _init_extension() 19 # which depends on libtorchaudio and dynamic loader will handle it for us. 20 if path.exists(): ---> 21 torch.ops.load_library(path) 22 torch.classes.load_library(path) 23 # This import is for initializing the methods registered via PyBind11

    /usr/local/lib/python3.7/dist-packages/torch/_ops.py in load_library(self, path) 108 # static (global) initialization code in order to register custom 109 # operators with the JIT. --> 110 ctypes.CDLL(path) 111 self.loaded_libraries.add(path) 112

    /usr/lib/python3.7/ctypes/init.py in init(self, name, mode, handle, use_errno, use_last_error) 362 363 if handle is None: --> 364 self._handle = _dlopen(self._name, mode) 365 else: 366 self._handle = handle

    OSError: libcudart.so.10.2: cannot open shared object file: No such file or directory

    opened by janzuiderveld 0
Releases(v0.1.0-alpha)
Owner
Descript
Descript
Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Yam Peleg 63 Sep 21, 2022
FS-Mol: A Few-Shot Learning Dataset of Molecules

FS-Mol is A Few-Shot Learning Dataset of Molecules, containing molecular compounds with measurements of activity against a variety of protein targets. The dataset is presented with a model evaluation

Microsoft 114 Dec 15, 2022
This package is for running the semantic SLAM algorithm using extracted planar surfaces from the received detection

Semantic SLAM This package can perform optimization of pose estimated from VO/VIO methods which tend to drift over time. It uses planar surfaces extra

Hriday Bavle 125 Dec 02, 2022
Code for layerwise detection of linguistic anomaly paper (ACL 2021)

Layerwise Anomaly This repository contains the source code and data for our ACL 2021 paper: "How is BERT surprised? Layerwise detection of linguistic

6 Dec 07, 2022
An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).

MixHop and N-GCN â € A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019)

Benedek Rozemberczki 393 Dec 13, 2022
Code for CVPR2021 "Visualizing Adapted Knowledge in Domain Transfer". Visualization for domain adaptation. #explainable-ai

Visualizing Adapted Knowledge in Domain Transfer @inproceedings{hou2021visualizing, title={Visualizing Adapted Knowledge in Domain Transfer}, auth

Yunzhong Hou 80 Dec 25, 2022
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking

One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking This is an official implementation for NEAS presented in CVPR

Multimedia Research 19 Sep 08, 2022
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

71 Oct 25, 2022
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

52 Dec 29, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
A simple python library for fast image generation of people who do not exist.

Random Face A simple python library for fast image generation of people who do not exist. For more details, please refer to the [paper](https://arxiv.

Sergei Belousov 170 Dec 15, 2022
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Clova AI Research 97 Dec 23, 2022
automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..)

Automatic-precautionary-guard automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..) what is this

badra 0 Jan 06, 2022
Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL"

Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL" This is the official codebase for Pessimism Meets I

3 Sep 19, 2022
Interactive Image Segmentation via Backpropagating Refinement Scheme

Won-Dong Jang and Chang-Su Kim, Interactive Image Segmentation via Backpropagating Refinement Scheme, CVPR 2019

Won-Dong Jang 85 Sep 15, 2022
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

旷视天元 MegEngine 28 Dec 09, 2022
Generating Videos with Scene Dynamics

Generating Videos with Scene Dynamics This repository contains an implementation of Generating Videos with Scene Dynamics by Carl Vondrick, Hamed Pirs

Carl Vondrick 706 Jan 04, 2023
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022