Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP

Overview

Wav2CLIP

🚧 WIP 🚧

Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP 📄 🔗

Ho-Hsiang Wu, Prem Seetharaman, Kundan Kumar, Juan Pablo Bello

We propose Wav2CLIP, a robust audio representation learning method by distilling from Contrastive Language-Image Pre-training (CLIP). We systematically evaluate Wav2CLIP on a variety of audio tasks including classification, retrieval, and generation, and show that Wav2CLIP can outperform several publicly available pre-trained audio representation algorithms. Wav2CLIP projects audio into a shared embedding space with images and text, which enables multimodal applications such as zero-shot classification, and cross-modal retrieval. Furthermore, Wav2CLIP needs just ~10% of the data to achieve competitive performance on downstream tasks compared with fully supervised models, and is more efficient to pre-train than competing methods as it does not require learning a visual model in concert with an auditory model. Finally, we demonstrate image generation from Wav2CLIP as qualitative assessment of the shared embedding space. Our code and model weights are open sourced and made available for further applications.

Installation

pip install wav2clip

Usage

Clip-Level Embeddings

import wav2clip

model = wav2clip.get_model()
embeddings = wav2clip.embed_audio(audio, model)

Frame-Level Embeddings

import wav2clip

model = wav2clip.get_model(frame_length=16000, hop_length=16000)
embeddings = wav2clip.embed_audio(audio, model)
Comments
  • request of projection layer weight

    request of projection layer weight

    Hi @hohsiangwu , Thanks for great work! Request pre-trained weights of image_transform (MLP layer) for audio-image-language joint embedding space.

    Currently, only audio encoders seem to exist in the get_model function. Is there any big problem if I use CLIP embedding (text or image) without projection layer?

    opened by SeungHeonDoh 2
  • Initial checkin for accessing pre-trained model via pip install

    Initial checkin for accessing pre-trained model via pip install

    I am considering using the release feature of GitHub to host model weights, once the url is added to MODEL_WEIGHTS_URL, and the repository is made public, we should be able to model = torch.hub.load('descriptinc/lyrebird-wav2clip', 'wav2clip', pretrained=True)

    opened by hohsiangwu 1
  • Adding VQGAN-CLIP with modification to generate audio

    Adding VQGAN-CLIP with modification to generate audio

    • Adding a working snapshot of original generate.py from https://github.com/nerdyrodent/VQGAN-CLIP/
    • Modify to add audio related params and functions
    • Add scripts to generate image and video with options for conditioning and interpolation
    opened by hohsiangwu 0
  • Supervised scenario no transform

    Supervised scenario no transform

    In the supervise scenario in the __init__.py the transform flag is not set to True, so the model doesn't contain the MLP layer after training. I'm wondering how you train the MLP layer when using as pretrained.

    opened by alirezadir 0
  • Integrated into VQGAN+CLIP 3D Zooming notebook

    Integrated into VQGAN+CLIP 3D Zooming notebook

    Dear researchers,

    I integrated Wav2CLIP into a VQGAN+CLIP animation notebook.

    It is available on colab here: https://colab.research.google.com/github/pollinations/hive/blob/main/notebooks/2%20Text-To-Video/1%20CLIP-Guided%20VQGAN%203D%20Turbo%20Zoom.ipynb

    I'm part of a team creating an open-source generative art platform called Pollinations.AI. It's also possible to use through our frontend if you are interested. https://pollinations.ai/p/QmT7yt67DF3GF4wd2vyw6bAgN3QZx7Xpnoyx98YWEsEuV7/create

    Here is an example output: https://user-images.githubusercontent.com/5099901/168467451-f633468d-e596-48f5-8c2c-2dc54648ead3.mp4

    opened by voodoohop 0
  • The details concerning loading raw audio files

    The details concerning loading raw audio files

    Hi !

    I haved imported the wave2clip as a package, however when testing, the inputs for the model to extract features are not original audio files. Thus can you provided the details to load the audio files to processed data for the model?

    opened by jinx2018 0
  • torch version

    torch version

    Hi, thanks for sharing the wonderful work! I encountered some issues during pip installing it, so may I ask what is the torch version you used? I cannot find the requirement of this project. Thanks!

    opened by annahung31 0
  • Error when importing after fresh installation on colab

    Error when importing after fresh installation on colab

    What CUDA and Python versions have you tested the pip package in? After installation on a fresh collab I receive the following error:


    OSError Traceback (most recent call last) in () ----> 1 import wav2clip

    7 frames /usr/local/lib/python3.7/dist-packages/wav2clip/init.py in () 2 import torch 3 ----> 4 from .model.encoder import ResNetExtractor 5 6

    /usr/local/lib/python3.7/dist-packages/wav2clip/model/encoder.py in () 4 from torch import nn 5 ----> 6 from .resnet import BasicBlock 7 from .resnet import ResNet 8

    /usr/local/lib/python3.7/dist-packages/wav2clip/model/resnet.py in () 3 import torch.nn as nn 4 import torch.nn.functional as F ----> 5 import torchaudio 6 7

    /usr/local/lib/python3.7/dist-packages/torchaudio/init.py in () ----> 1 from torchaudio import _extension # noqa: F401 2 from torchaudio import ( 3 compliance, 4 datasets, 5 functional,

    /usr/local/lib/python3.7/dist-packages/torchaudio/_extension.py in () 25 26 ---> 27 _init_extension()

    /usr/local/lib/python3.7/dist-packages/torchaudio/_extension.py in _init_extension() 19 # which depends on libtorchaudio and dynamic loader will handle it for us. 20 if path.exists(): ---> 21 torch.ops.load_library(path) 22 torch.classes.load_library(path) 23 # This import is for initializing the methods registered via PyBind11

    /usr/local/lib/python3.7/dist-packages/torch/_ops.py in load_library(self, path) 108 # static (global) initialization code in order to register custom 109 # operators with the JIT. --> 110 ctypes.CDLL(path) 111 self.loaded_libraries.add(path) 112

    /usr/lib/python3.7/ctypes/init.py in init(self, name, mode, handle, use_errno, use_last_error) 362 363 if handle is None: --> 364 self._handle = _dlopen(self._name, mode) 365 else: 366 self._handle = handle

    OSError: libcudart.so.10.2: cannot open shared object file: No such file or directory

    opened by janzuiderveld 0
Releases(v0.1.0-alpha)
Owner
Descript
Descript
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
NALSM: Neuron-Astrocyte Liquid State Machine

NALSM: Neuron-Astrocyte Liquid State Machine This package is a Tensorflow implementation of the Neuron-Astrocyte Liquid State Machine (NALSM) that int

Computational Brain Lab 4 Nov 28, 2022
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
Nest Protect integration for Home Assistant. This will allow you to integrate your smoke, heat, co and occupancy status real-time in HA.

Nest Protect integration for Home Assistant Custom component for Home Assistant to interact with Nest Protect devices via an undocumented and unoffici

Mick Vleeshouwer 175 Dec 29, 2022
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
An atmospheric growth and evolution model based on the EVo degassing model and FastChem 2.0

EVolve Linking planetary mantles to atmospheric chemistry through volcanism using EVo and FastChem. Overview EVolve is a linked mantle degassing and a

Pip Liggins 2 Jan 17, 2022
A fast python implementation of Ray Tracing in One Weekend using python and Taichi

ray-tracing-one-weekend-taichi A fast python implementation of Ray Tracing in One Weekend using python and Taichi. Taichi is a simple "Domain specific

157 Dec 26, 2022
A simple and extensible library to create Bayesian Neural Network layers on PyTorch.

Blitz - Bayesian Layers in Torch Zoo BLiTZ is a simple and extensible library to create Bayesian Neural Network Layers (based on whats proposed in Wei

Pi Esposito 722 Jan 08, 2023
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.

Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,

Yuanming Hu 719 Dec 29, 2022
GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs

GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs GraphLily is the first FPGA overlay for graph processing. GraphLily supports a rich se

Cornell Zhang Research Group 39 Dec 13, 2022
Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE)

OG-SPACE Introduction Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE) is a computational framewo

Data and Computational Biology Group UNIMIB (was BI*oinformatics MI*lan B*icocca) 0 Nov 17, 2021
Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

taganomaly Anomaly detection labeling tool, specifically for multiple time series (one time series per category). Taganomaly is a tool for creating la

Microsoft 272 Dec 17, 2022
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.

This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their

Liron Bdolah 8 May 22, 2022
Official repository for Fourier model that can generate periodic signals

Conditional Generation of Periodic Signals with Fourier-Based Decoder Jiyoung Lee, Wonjae Kim, Daehoon Gwak, Edward Choi This repository provides offi

8 May 25, 2022
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022
HiFT: Hierarchical Feature Transformer for Aerial Tracking (ICCV2021)

HiFT: Hierarchical Feature Transformer for Aerial Tracking Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li Our paper is Accepted by ICCV 2

Intelligent Vision for Robotics in Complex Environment 55 Nov 23, 2022
PyTorch implementations of deep reinforcement learning algorithms and environments

Deep Reinforcement Learning Algorithms with PyTorch This repository contains PyTorch implementations of deep reinforcement learning algorithms and env

Petros Christodoulou 4.7k Jan 04, 2023
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
GitHub repository for "Improving Video Generation for Multi-functional Applications"

Improving Video Generation for Multi-functional Applications GitHub repository for "Improving Video Generation for Multi-functional Applications" Pape

Bernhard Kratzwald 328 Dec 07, 2022