yolox_backbone is a deep-learning library and is a collection of YOLOX Backbone models.

Overview

YOLOX-Backbone

yolox-backbone is a deep-learning library and is a collection of YOLOX backbone models.

Install

pip install yolox-backbone

Load a Pretrained Model

Pretrained models can be loaded using yolox_backbone.create_model.

import yolox_backbone

m = yolox_backbone.create_model('yolox-s', pretrained=True)
m.eval()

List Supported Models

import yolox_backbone
from pprint import pprint

model_names = yolox_backbone.list_models()
pprint(model_names)

>>> ['yolox-s',
 'yolox-m',
 'yolox-l',
 'yolox-x',
 'yolox-nano',
 'yolox-tiny',
 'yolox-darknet53']

Select specific feature levels

There is one creation argument impacting the output features.

  • out_features selects which FPN features to output

Example

import yolox_backbone
import torch
from pprint import pprint

pprint(yolox_backbone.list_models())

model_names = yolox_backbone.list_models()
for model_name in model_names:
    print("model_name: ", model_name)
    model = yolox_backbone.create_model(model_name=model_name, 
                                        pretrained=True, 
                                        out_features=["P3", "P4", "P5"]
                                        )

    input_tensor = torch.randn((1, 3, 640, 640))
    fpn_output_tensors = model(input_tensor)

    p3 = fpn_output_tensors["P3"]
    p4 = fpn_output_tensors["P4"]
    p5 = fpn_output_tensors["P5"]
    
    print("input_tensor.shape: ", input_tensor.shape)
    print("p3.shape: ", p3.shape)
    print("p4.shape: ", p4.shape)
    print("p5.shape: ", p5.shape)
    print("-" * 50)
    

Output:

['yolox-s', 'yolox-m', 'yolox-l', 'yolox-x', 'yolox-nano', 'yolox-tiny', 'yolox-darknet53']
model_name:  yolox-s
input_tensor.shape:  torch.Size([1, 3, 640, 640])
p3.shape:  torch.Size([1, 128, 80, 80])
p4.shape:  torch.Size([1, 256, 40, 40])
p5.shape:  torch.Size([1, 512, 20, 20])
--------------------------------------------------
model_name:  yolox-m
input_tensor.shape:  torch.Size([1, 3, 640, 640])
p3.shape:  torch.Size([1, 192, 80, 80])
p4.shape:  torch.Size([1, 384, 40, 40])
p5.shape:  torch.Size([1, 768, 20, 20])
--------------------------------------------------
model_name:  yolox-l
input_tensor.shape:  torch.Size([1, 3, 640, 640])
p3.shape:  torch.Size([1, 256, 80, 80])
p4.shape:  torch.Size([1, 512, 40, 40])
p5.shape:  torch.Size([1, 1024, 20, 20])
--------------------------------------------------
model_name:  yolox-x
input_tensor.shape:  torch.Size([1, 3, 640, 640])
p3.shape:  torch.Size([1, 320, 80, 80])
p4.shape:  torch.Size([1, 640, 40, 40])
p5.shape:  torch.Size([1, 1280, 20, 20])
--------------------------------------------------
model_name:  yolox-nano
input_tensor.shape:  torch.Size([1, 3, 640, 640])
p3.shape:  torch.Size([1, 64, 80, 80])
p4.shape:  torch.Size([1, 128, 40, 40])
p5.shape:  torch.Size([1, 256, 20, 20])
--------------------------------------------------
model_name:  yolox-tiny
input_tensor.shape:  torch.Size([1, 3, 640, 640])
p3.shape:  torch.Size([1, 96, 80, 80])
p4.shape:  torch.Size([1, 192, 40, 40])
p5.shape:  torch.Size([1, 384, 20, 20])
--------------------------------------------------
model_name:  yolox-darknet53
input_tensor.shape:  torch.Size([1, 3, 640, 640])
p3.shape:  torch.Size([1, 128, 80, 80])
p4.shape:  torch.Size([1, 256, 40, 40])
p5.shape:  torch.Size([1, 512, 20, 20])
--------------------------------------------------
Owner
Yonghye Kwon
practical
Yonghye Kwon
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette 🎶 Imagenette, gentille imagenette, Imagenette, je te plumerai. 🎶 (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
商品推荐系统

商品top50推荐系统 问题建模 本项目的数据集给出了15万左右的用户以及12万左右的商品, 以及对应的经过脱敏处理的用户特征和经过预处理的商品特征,旨在为用户推荐50个其可能购买的商品。 推荐系统架构方案 本项目采用传统的召回+排序的方案。

107 Dec 29, 2022
PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

1 May 31, 2022
Python Wrapper for Embree

pyembree Python Wrapper for Embree Installation You can install pyembree (and embree) via the conda-forge package. $ conda install -c conda-forge pyem

Anthony Scopatz 67 Dec 24, 2022
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
This is the formal code implementation of the CVPR 2022 paper 'Federated Class Incremental Learning'.

Official Pytorch Implementation for GLFC [CVPR-2022] Federated Class-Incremental Learning This is the official implementation code of our paper "Feder

Race Wang 57 Dec 27, 2022
A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

George Gunter 4 Nov 14, 2022
Pytorch implementation of VAEs for heterogeneous likelihoods.

Heterogeneous VAEs Beware: This repository is under construction 🛠️ Pytorch implementation of different VAE models to model heterogeneous data. Here,

Adrián Javaloy 35 Nov 29, 2022
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
Simulate genealogical trees and genomic sequence data using population genetic models

msprime msprime is a population genetics simulator based on tskit. Msprime can simulate random ancestral histories for a sample of individuals (consis

Tskit developers 150 Dec 14, 2022
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel ga

Tarun K 280 Dec 23, 2022
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Jungbeom Lee 110 Dec 07, 2022
Gesture Volume Control v.2

Gesture volume control v.2 In this project I am going to learn how to use Gesture Control to change the volume of a computer. I first look into hand t

Pavel Dat 23 Dec 26, 2022
一套完整的微博舆情分析流程代码,包括微博爬虫、LDA主题分析和情感分析。

已经将项目的关键文件上传,包含微博爬虫、LDA主题分析和情感分析三个部分。 1.微博爬虫 实现微博评论爬取和微博用户信息爬取,一天大概十万条。 2.LDA主题分析 实现文档主题抽取,包括数据清洗及分词、主题数的确定(主题一致性和困惑度)和最优主题模型的选择(暴力搜索)。 3.情感分析 实现评论文本的

182 Jan 02, 2023
For holding anime-related object classification and detection models

Animesion An end-to-end framework for anime-related object classification, detection, segmentation, and other models. Update: 01/22/2020. Due to time-

Edwin Arkel Rios 72 Nov 30, 2022