LQM - Improving Object Detection by Estimating Bounding Box Quality Accurately

Related tags

Deep LearningLQM
Overview

Improving Object Detection by Estimating Bounding Box Quality Accurately

Abstract

Object detection aims to locate and classify object instances in images. Therefore, the object detection model is generally implemented with two parallel branches to optimize localization and classification. After training the detection model, we should select the best bounding box of each class among a number of estimations for reliable inference. Generally, NMS (Non Maximum Suppression) is operated to suppress low-quality bounding boxes by referring to classification scores or center-ness scores. However, since the quality of bounding boxes is not considered, the low-quality bounding boxes can be accidentally selected as a positive bounding box for the corresponding class. We believe that this misalignment between two parallel tasks causes degrading of the object detection performance. In this paper, we propose a method to estimate bounding boxes' quality using four-directional Gaussian quality modeling, which leads the consistent results between two parallel branches. Extensive experiments on the MS COCO benchmark show that the proposed method consistently outperforms the baseline (FCOS). Eventually, our best model offers the state-of-the-art performance by achieving 48.9% in AP. We also confirm the efficiency of the method by comparing the number of parameters and computational overhead.

Overall Architecture

Implementation Details

We implement our detection model on top of MMDetection (v2.6), an open source object detection toolbox. If not specified separately, the default settings of FCOS implementation are not changed. We train and validate our network on four RTX TITAN GPUs in the environment of Pytorch v1.6 and CUDA v10.2.

Please see GETTING_STARTED.md for the basic usage of MMDetection.

Installation


  1. Clone the this repository.

    git clone https://github.com/POSTECH-IMLAB/LQM.git
    cd LQM
  2. Create a conda virtural environment and install dependencies.

    conda env create -f environment.yml
  3. Activate conda environment

    conda activate lqm
  4. Install build requirements and then install MMDetection.

    pip install --force-reinstall mmcv-full==1.1.5 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.6.0/index.html
    pip install -v -e .

Preparing MS COCO dataset


bash download_coco.sh

Preparing Pre-trained model weights


bash download_weights.sh

Train


# assume that you are under the root directory of this project,
# and you have activated your virtual environment if needed.
# and with COCO dataset in 'data/coco/'

./tools/dist_train.sh configs/uncertainty_guide/uncertainty_guide_r50_fpn_1x.py 4 --validate

Inference


./tools/dist_test.sh configs/uncertainty_guide/uncertainty_guide_r50_fpn_1x.py work_dirs/uncertainty_guide_r50_fpn_1x/epoch_12.pth 4 --eval bbox

Image demo using pretrained model weight


# Result will be saved under the demo directory of this project (detection_result.jpg)
# config, checkpoint, source image path are needed (If you need pre-trained weights, you can download them from provided google drive link)
# score threshold is optional

python demo/LQM_image_demo.py --config configs/uncertainty_guide/uncertainty_guide_r50_fpn_1x.py --checkpoint work_dirs/pretrained/LQM_r50_fpn_1x.pth --img data/coco/test2017/000000011245.jpg --score-thr 0.3

Webcam demo using pretrained model weight


# config, checkpoint path are needed (If you need pre-trained weights, you can download them from provided google drive link)
# score threshold is optional

python demo/webcam_demo.py configs/uncertainty_guide/uncertainty_guide_r50_fpn_1x.py work_dirs/pretrained/LQM_r50_fpn_1x.pth

Models


For your convenience, we provide the following trained models. All models are trained with 16 images in a mini-batch with 4 GPUs.

Model Multi-scale training AP (minival) Link
LQM_R50_FPN_1x No 40.0 Google
LQM_R101_FPN_2x Yes 44.8 Google
LQM_R101_dcnv2_FPN_2x Yes 47.4 Google
LQM_X101_FPN_2x Yes 47.2 Google
LQM_X101_dcnv2_FPN_2x Yes 48.9 Google
Owner
IM Lab., POSTECH
IM Lab., POSTECH
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Jake YANG 62 Nov 21, 2022
Pytorch implementation of Implicit Behavior Cloning.

Implicit Behavior Cloning - PyTorch (wip) Pytorch implementation of Implicit Behavior Cloning. Install conda create -n ibc python=3.8 pip install -r r

Kevin Zakka 49 Dec 25, 2022
A tool for calculating distortion parameters in coordination complexes.

OctaDist Octahedral distortion calculator: A tool for calculating distortion parameters in coordination complexes. https://octadist.github.io/ Registe

OctaDist 12 Oct 04, 2022
Source codes for the paper "Local Additivity Based Data Augmentation for Semi-supervised NER"

LADA This repo contains codes for the following paper: Jiaao Chen*, Zhenghui Wang*, Ran Tian, Zichao Yang, Diyi Yang: Local Additivity Based Data Augm

GT-SALT 36 Dec 02, 2022
An implementation for the ICCV 2021 paper Deep Permutation Equivariant Structure from Motion.

Deep Permutation Equivariant Structure from Motion Paper | Poster This repository contains an implementation for the ICCV 2021 paper Deep Permutation

72 Dec 27, 2022
Magisk module to enable hidden features on Android 12 Developer Preview 1.

Android 12 Extensions This is a Magisk module that enables hidden features on Android 12 Developer Preview 1. Features Scrolling screenshots Wallpaper

Danny Lin 384 Jan 06, 2023
PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Xinlei-Pei 6 Dec 23, 2022
PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/temporal/spatiotemporal databases

Introduction PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/tempor

RAGE UDAY KIRAN 43 Jan 08, 2023
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. The Anti-Backdoor Learning

Yige-Li 51 Dec 07, 2022
Telegram chatbot created with deep learning model (LSTM) and telebot library.

Telegram chatbot Telegram chatbot created with deep learning model (LSTM) and telebot library. Description This program will allow you to create very

1 Jan 04, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
Source code for CVPR 2020 paper "Learning to Forget for Meta-Learning"

L2F - Learning to Forget for Meta-Learning Sungyong Baik, Seokil Hong, Kyoung Mu Lee Source code for CVPR 2020 paper "Learning to Forget for Meta-Lear

Sungyong Baik 29 May 22, 2022
Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding

Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding This repository contains the source code for the Rot-Pro model, presented a

Tewi 9 Sep 28, 2022
Automatic Number Plate Recognition using Contours and Convolution Neural Networks (CNN)

Cite our paper if you find this project useful https://www.ijariit.com/manuscripts/v7i4/V7I4-1139.pdf Abstract Image processing technology is used in

Adithya M 2 Jun 28, 2022
190 Jan 03, 2023
Realtime micro-expression recognition using OpenCV and PyTorch

Micro-expression Recognition Realtime micro-expression recognition from scratch using OpenCV and PyTorch Try it out with a webcam or video using the e

Irfan 35 Dec 05, 2022
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Bin Xiao 175 Jan 08, 2023
fklearn: Functional Machine Learning

fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th

nubank 1.4k Dec 07, 2022
なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモ

FaceDetection-Anti-Spoof-Demo なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモです。 モデルはPINTO_model_zoo/191_anti-spoof-mn3からONNX形式のモデルを使用しています。 Requirement mediapipe

KazuhitoTakahashi 8 Nov 18, 2022