A suite of benchmarks for CPU and GPU performance of the most popular high-performance libraries for Python :rocket:

Overview

DOI

HPC benchmarks for Python

This is a suite of benchmarks to test the sequential CPU and GPU performance of various computational backends with Python frontends.

Specifically, we want to test which high-performance backend is best for geophysical (finite-difference based) simulations.

Contents

FAQ

Why?

The scientific Python ecosystem is thriving, but high-performance computing in Python isn't really a thing yet. We try to change this with our pure Python ocean simulator Veros, but which backend should we use for computations?

Tremendous amounts of time and resources go into the development of Python frontends to high-performance backends, but those are usually tailored towards deep learning. We wanted to see whether we can profit from those advances, by (ab-)using these libraries for geophysical modelling.

Why do the benchmarks look so weird?

These are more or less verbatim copies from Veros (i.e., actual parts of a physical model). Most earth system and climate model components are based on finite-difference schemes to compute derivatives. This can be represented in vectorized form by index shifts of arrays (such as 0.5 * (arr[1:] + arr[:-1]), the first-order derivative of arr at every point). The most common index range is [2:-2], which represents the full domain (the two outermost grid cells are overlap / "ghost cells" that allow us to shift the array across the boundary).

Now, maths is difficult, and numerics are weird. When many different physical quantities (defined on different grids) interact, things get messy very fast.

Why only test sequential CPU performance?

Two reasons:

  • I was curious to see how good the compilers are without being able to fall back to thread parallelism.
  • In many physical models, it is pretty straightforward to parallelize the model "by hand" via MPI. Therefore, we are not really dependent on good parallel performance out of the box.

Which backends are currently supported?

(not every backend is available for every benchmark)

What is included in the measurements?

Pure time spent number crunching. Preparing the inputs, copying stuff from and to GPU, compilation time, time it takes to check results etc. are excluded. This is based on the assumption that these things are only done a few times per simulation (i.e., that their cost is amortized during long-running simulations).

How does this compare to a low-level implementation?

As a rule of thumb (from our experience with Veros), the performance of a Fortran implementation is very close to that of the Numba backend, or ~3 times faster than NumPy.

Environment setup

For CPU:

$ conda env create -f environment-cpu.yml
$ conda activate pyhpc-bench-cpu

GPU:

$ conda env create -f environment-gpu.yml
$ conda activate pyhpc-bench-gpu

If you prefer to install things by hand, just have a look at the environment files to see what you need. You don't need to install all backends; if a module is unavailable, it is skipped automatically.

Usage

Your entrypoint is the script run.py:

$ python run.py --help
Usage: run.py [OPTIONS] BENCHMARK

  HPC benchmarks for Python

  Usage:

      $ python run.py benchmarks/<BENCHMARK_FOLDER>

  Examples:

      $ taskset -c 0 python run.py benchmarks/equation_of_state

      $ python run.py benchmarks/equation_of_state -b numpy -b jax --device
      gpu

  More information:

      https://github.com/dionhaefner/pyhpc-benchmarks

Options:
  -s, --size INTEGER              Run benchmark for this array size
                                  (repeatable)  [default: 4096, 16384, 65536,
                                  262144, 1048576, 4194304]
  -b, --backend [numpy|cupy|jax|aesara|numba|pytorch|tensorflow]
                                  Run benchmark with this backend (repeatable)
                                  [default: run all backends]
  -r, --repetitions INTEGER       Fixed number of iterations to run for each
                                  size and backend [default: auto-detect]
  --burnin INTEGER                Number of initial iterations that are
                                  disregarded for final statistics  [default:
                                  1]
  --device [cpu|gpu|tpu]          Run benchmarks on given device where
                                  supported by the backend  [default: cpu]
  --help                          Show this message and exit.

Benchmarks are run for all combinations of the chosen sizes (-s) and backends (-b), in random order.

CPU

Some backends refuse to be confined to a single thread, so I recommend you wrap your benchmarks in taskset to set processor affinity to a single core (only works on Linux):

$ conda activate pyhpc-bench-cpu
$ taskset -c 0 python run.py benchmarks/<benchmark_name>

GPU

Some backends use all available GPUs by default, some don't. If you have multiple GPUs, you can set the one to be used through CUDA_VISIBLE_DEVICES, so keep things fair.

Some backends are greedy with allocating memory. On GPU, you can only run one backend at a time (add NumPy for reference):

--device gpu -b $backend -b numpy -s 10_000_000 ... done ">
$ conda activate pyhpc-bench-gpu
$ export CUDA_VISIBLE_DEVICES="0"
$ for backend in jax cupy pytorch tensorflow; do
...    python run benchmarks/<benchmark_name> --device gpu -b $backend -b numpy -s 10_000_000
...    done

Example results

Summary

Equation of state

Isoneutral mixing

Turbulent kinetic energy

Full reports

Conclusion

Lessons I learned by assembling these benchmarks: (your mileage may vary)

  • The performance of JAX is very competitive, both on GPU and CPU. It is consistently among the top implementations on both platforms.
  • Pytorch performs very well on GPU for large problems (slightly better than JAX), but its CPU performance is not great for tasks with many slicing operations.
  • Numba is a great choice on CPU if you don't mind writing explicit for loops (which can be more readable than a vectorized implementation), being slightly faster than JAX with little effort.
  • JAX performance on GPU seems to be quite hardware dependent. JAX performancs significantly better (relatively speaking) on a Tesla P100 than a Tesla K80.
  • If you have embarrasingly parallel workloads, speedups of > 1000x are easy to achieve on high-end GPUs.
  • TPUs are catching up to GPUs. We can now get similar performance to a high-end GPU on these workloads.
  • Tensorflow is not great for applications like ours, since it lacks tools to apply partial updates to tensors (such as tensor[2:-2] = 0.).
  • If you use Tensorflow on CPU, make sure to use XLA (experimental_compile) for tremendous speedups.
  • CuPy is nice! Often you don't need to change anything in your NumPy code to have it run on GPU (with decent, but not outstanding performance).
  • Reaching Fortran performance on CPU for non-trivial tasks is hard :)

Contributing

Community contributions are encouraged! Whether you want to donate another benchmark, share your experience, optimize an implementation, or suggest another backend - feel free to ask or open a PR.

Adding a new backend

Adding a new backend is easy!

Let's assume that you want to add support for a library called speedygonzales. All you need to do is this:

  • Implement a benchmark to use your library, e.g. benchmarks/equation_of_state/eos_speedygonzales.py.

  • Register the benchmark in the respective __init__.py file (benchmarks/equation_of_state/__init__.py), by adding "speedygonzales" to its __implementations__ tuple.

  • Register the backend, by adding its setup function to the __backends__ dict in backends.py.

    A setup function is what is called before every call to your benchmark, and can be used for custom setup and teardown. In the simplest case, it is just

    def setup_speedygonzales(device='cpu'):
        # code to run before benchmark
        yield
        # code to run after benchmark

Then, you can run the benchmark with your new backend:

$ python run.py benchmarks/equation_of_state -b speedygonzales
Comments
  • fastmath

    fastmath

    Hi @dionhaefner, great comparisons, thanks for that! Out of interest. Did you ever try to run numba with fastmath=True; does it make any difference, and if, how much?

    opened by prisae 9
  • turbulent_kinetic_energy returns inconsistent results

    turbulent_kinetic_energy returns inconsistent results

    I am working on https://github.com/dionhaefner/pyhpc-benchmarks/pull/14. The command has inconsistent result output:

    $ python run.py -r 2 -s 1048576 --device cpu -b pytorch benchmarks/turbulent_kinetic_energy/
    
    Using pytorch version 1.13.0.dev20220617+cu113
    Running 3 benchmarks...  [------------------------------------]    0%Error: inconsistent results for size 1048576
    Error: inconsistent results for size 1048576
    Error: inconsistent results for size 1048576
    Running 3 benchmarks...  [####################################]  100%
    
    benchmarks.turbulent_kinetic_energy
    ===================================
    Running on CPU
    
    size          backend     calls     mean      stdev     min       25%       median    75%       max       Δ
    ------------------------------------------------------------------------------------------------------------------
       1,048,576  pytorch            2     0.573     0.028     0.544     0.559     0.573     0.587     0.601     1.000
    
    (time in wall seconds, less is better)
    

    Looks like two consecutive runs will generate inconsistent results for turbulent_kinetic_energy. I guess the root cause is this line: https://github.com/dionhaefner/pyhpc-benchmarks/blob/master/benchmarks/turbulent_kinetic_energy/tke_pytorch.py#L264

    There could be non-deterministic numeric results when running mask = tke[2:-2, 2:-2, -1, taup1] < 0.0

    opened by xuzhao9 5
  • deprecated jax ops: index_update

    deprecated jax ops: index_update

    the call for backend in jax; do python run.py benchmarks/isoneutral_mixing/ --device gpu -b $backend -b numpy; done yields

    dTdz = jax.ops.index_update(
    AttributeError: module 'jax.ops' has no attribute 'index_update'
    

    and indeed index_update is no longer a thing: https://jax.readthedocs.io/en/latest/jax.ops.html

    opened by ilemhadri 1
  • DRAFT: Add Transonic + {Pythran, Cython}

    DRAFT: Add Transonic + {Pythran, Cython}

    Fixes #9

    Notes:

    1. Calling the setup function multiple times in a benchmark should be avoided
    2. Equation of state benchmark was easy to implement
    3. Isoneutral benchmark has some issues -- does not compile yet, despite workaround in ba03d48
    4. TODO: Turbulent kinetic energy benchmark
    opened by ashwinvis 2
  • Compare with TACO Python binding

    Compare with TACO Python binding

    The Tensor Algebra Compiler (https://github.com/tensor-compiler/taco) seems to be good at sparse/dense linear algebra and has Python frontend: http://tensor-compiler.org/docs/pycomputations/index.html

    contributions-welcome 
    opened by learning-chip 1
  • Compare with an MLIR-based stencil DSL

    Compare with an MLIR-based stencil DSL

    This project https://github.com/spcl/open-earth-compiler/ provides a DSL frontend for stencil/PDE programs, and rely on MLIR & LLVM to run on NVIDIA and AMD GPUs. It is not a Python frontend, but can be called from Python I think (see https://arxiv.org/abs/2005.13014)

    contributions-welcome 
    opened by learning-chip 1
  • Compare with DaCe framework?

    Compare with DaCe framework?

    DaCe (https://github.com/spcl/dace) is a parallel computing framework that also support Numpy frontend, similar to JAX and Numba. It runs on CPU/GPU/FPGA. Would be interesting to add it for comparison!

    contributions-welcome 
    opened by learning-chip 4
Releases(v3.0)
  • v3.0(Oct 28, 2021)

    • Theano and Bohrium are dead 💀🦴
    • Aesara replaces Theano on CPU
    • New Pytorch implementation for TKE benchmark
    • Updates of all library versions and a complete re-run of reference results 📈
    Source code(tar.gz)
    Source code(zip)
  • v2.1(Oct 5, 2021)

  • v2.0(Jul 22, 2020)

Owner
Dion Häfner
I do science with Python.
Dion Häfner
🏃💨 For when you need to fill out feedback in the last minute.

BMSCE Auto Feedback For when you need to fill out feedback in the last minute. 🏃 💨 Setup Clone the repository Run pip install selenium Set the RATIN

Shaan Subbaiah 10 May 23, 2022
Multi-asset backtesting framework. An intuitive API lets analysts try out their strategies right away

Multi-asset backtesting framework. An intuitive API lets analysts try out their strategies right away. Fast execution of profit-take/loss-cut orders is built-in. Seamless with Pandas.

Epymetheus 39 Jan 06, 2023
A simple python script that uses selenium(chrome web driver),pyautogui,time and schedule modules to enter google meets automatically

A simple python script that uses selenium(chrome web driver),pyautogui,time and schedule modules to enter google meets automatically

3 Feb 07, 2022
Auto-hms-action - Automation of NU Health Management System

🦾 Automation of NU Health Management System 🤖 長崎大学 健康管理システムの自動化 🏯 Usage / 使い方

k5-mot 3 Mar 04, 2022
Data App Performance Tests

Data App Performance Tests My hypothesis is that The different architectures of

Marc Skov Madsen 6 Dec 14, 2022
Silky smooth profiling for Django

Silk Silk is a live profiling and inspection tool for the Django framework. Silk intercepts and stores HTTP requests and database queries before prese

Jazzband 3.7k Jan 04, 2023
Automated tests for OKAY websites in Python (Selenium) - user friendly version

Okay Selenium Testy Aplikace určená k testování produkčních webů společnosti OKAY s.r.o. Závislosti K běhu aplikace je potřeba mít v počítači nainstal

Viktor Bem 0 Oct 01, 2022
API Test Automation with Requests and Pytest

api-testing-requests-pytest Install Make sure you have Python 3 installed on your machine. Then: 1.Install pipenv sudo apt-get install pipenv 2.Go to

Sulaiman Haque 2 Nov 21, 2021
Airspeed Velocity: A simple Python benchmarking tool with web-based reporting

airspeed velocity airspeed velocity (asv) is a tool for benchmarking Python packages over their lifetime. It is primarily designed to benchmark a sing

745 Dec 28, 2022
:game_die: Pytest plugin to randomly order tests and control random.seed

pytest-randomly Pytest plugin to randomly order tests and control random.seed. Features All of these features are on by default but can be disabled wi

pytest-dev 471 Dec 30, 2022
It's a simple script to generate a mush on code forces, the script will accept the public problem urls only or polygon problems.

Codeforces-Sheet-Generator It's a simple script to generate a mushup on code forces, the script will accept the public problem urls only or polygon pr

Ahmed Hossam 10 Aug 02, 2022
Doggo Browser

Doggo Browser Quick Start $ python3 -m venv ./venv/ $ source ./venv/bin/activate $ pip3 install -r requirements.txt $ ./sobaki.py References Heavily I

Alexey Kutepov 9 Dec 12, 2022
🐍 Material for PyData Global 2021 Presentation: Effective Testing for Machine Learning Projects

Effective Testing for Machine Learning Projects Code for PyData Global 2021 Presentation by @edublancas. Slides available here. The project is develop

Eduardo Blancas 73 Nov 06, 2022
automate the procedure of 403 response code bypass

403bypasser automate the procedure of 403 response code bypass Description i notice a lot of #bugbountytips describe how to bypass 403 response code s

smackerdodi2 40 Dec 16, 2022
FakeDataGen is a Full Valid Fake Data Generator.

FakeDataGen is a Full Valid Fake Data Generator. This tool helps you to create fake accounts (in Spanish format) with fully valid data. Within this in

Joel GM 64 Dec 12, 2022
Turn any OpenAPI2/3 and Postman Collection file into an API server with mocking, transformations and validations.

Prism is a set of packages for API mocking and contract testing with OpenAPI v2 (formerly known as Swagger) and OpenAPI v3.x. Mock Servers: Life-like

Stoplight 3.3k Jan 05, 2023
A rewrite of Python's builtin doctest module (with pytest plugin integration) but without all the weirdness

The xdoctest package is a re-write of Python's builtin doctest module. It replaces the old regex-based parser with a new abstract-syntax-tree based pa

Jon Crall 174 Dec 16, 2022
Getting the most out of your hobby servo

ServoProject by Adam Bäckström Getting the most out of your hobby servo Theory The control system of a regular hobby servo looks something like this:

209 Dec 20, 2022
Test for generating stylized circuit traces from images

I test of an image processing idea to take an image and make neat circuit board art automatically. Inspired by this twitter post by @JackRhysider

Miller Hooks 3 Dec 12, 2022
A small automated test structure using python to test *.cpp codes

Get Started Insert C++ Codes Add Test Code Run Test Samples Check Coverages Insert C++ Codes you can easily add c++ files in /inputs directory there i

Alireza Zahiri 2 Aug 03, 2022