This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks

Overview

S22-W4111-HW-1-0:
W4111 - Intro to Databases HW0 and HW1

Introduction

This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks.

HW 0 - All Students

You have completed the first step, which is cloning the project template.

Note: You are Columbia students. You should be able to install SW and follow instructions.

MySQL:

  • Download the installation files for MySQL Community Server..

    • Make sure you download for the correct operating system.
    • If you are on Mac make sure you choose the correct architecture. ARM is for Apple silicon. x86 is for other Apple systems.
    • On Windows, you can download and use the MSI.
  • Follow the installation instructions for MySQL. There are official instructions and many online tutorials.

  • Remember your root user ID and password, that you set during installation. Also, choose "Legacy Authentication" when prompted.

    • If you forget your root user or password, you are on your own. The TAs and I will not fix any problems due to forgetting the information.
    • Also, if you say something like, "It did not prompt me for a user ID and password when I instaled ... ..," we will laugh. We will say something like, ""Sure. 20 million MySQL installations asked for the information, but it decide to not to ask you."
    • If you tell us that you are sure that you are entering the correct user ID and password we will laugh. We will say something like, "Which is more likely. That a DATABASE forgot something or" you did?"
  • You only need to install the server. All other SW packages are optional.

Anaconda:

  • I strongly recommend uninstalling any existing version of Anaconda. If you choose not to uninstall previous versions, you may hit issues. You are on your own if you hit issues due to conflicting versions of Anaconda during the semester.

  • Download the most recent version of Ananconda..

  • Follow the installation instructions. Choose "Install for me" when prompted. If you hit a problem and I find your Anaconda installation in the wrong directory, you are on your own. If you say something like, "But, it did not give me that option," you can guess what will happen.

DataGrip:

  • Download DataGrip. Make sure you choose the correct OS and silicon.

  • Follow the installation instructions.

  • Apply for a student license.

  • When you receive confirmation of your student license, set the license information in DataGrip.

HW0: Non-Programming

Step 1: Initial Files

  1. Create a folder in the project of the form _src, where is your UNI I created an example, which is dff9_src.

  2. Create a file in the directory _HW0.

  3. Copy the Jupyter notebook file from dff9_src/dff9_HW0.ipynb into the directory you created and replace dff9 with your UNI.

  4. Do the same for dff9_HW0.py

Step 2: Jupter Notebook

  • Start Anaconda.

  • Open Jupyter Notebook in Anaconda.

  • Navigate to the directory where you cloned the repository, and then go into the folder you created.

  • Open the notebook (the file ending in .ipynb).

  • The remaining steps in HW0: Non-Programming are in the notebook that you opened.

HW 0: Programming

  • Complete the steps for HW0: Non-Programming.

  • The programming track is not "harder" than non-programming. The initial set up is a little more work, however.

  • Download and install PyCharm. Download and install the professional edition.

  • Follow the instructions to set the license key using the JetBrains account you used to get the DataGrip licenses.

  • Start PyCharm, navigate to and open the project that you cloned from GitHub.

  • Follow the instructions for creating a new virtual Conda environment for the project.

  • Select the root folder in the project, right click and add a new Python Package named _web_src. My example is dff9_web_src.

  • Copy the files from dff9_web_src into the package you created.

  • Follow the instructions for adding a package to your virtual environment. You should add the package flask.

  • Right click on your file application.py that you copied and select run. You will see a console window open and this will show a URL. Copy on the URL.

  • Open a browser. Paste the URL and append '/health'. My URL looks like http://172.20.1.14:5000/health. Yours may be a little different.

  • Hit enter. You should see a health message. Take a screenshot of the browser window and add the file to the directory. My example is ""

Owner
Donald F. Ferguson
Senior Technical Fellow, Chief SW Architect, Ansys, Inc. Adjunct Professor, Dept. of Computer Science, Columbia University. CTO and Co-Founder, Seeka.TV
Donald F. Ferguson
SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

SNV Pipeline SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

East Genomics 1 Nov 02, 2021
Data pipelines built with polars

valves Warning: the project is very much work in progress. Valves is a collection of functions for your data .pipe()-lines. This project aimes to host

14 Jan 03, 2023
Pandas-based utility to calculate weighted means, medians, distributions, standard deviations, and more.

weightedcalcs weightedcalcs is a pandas-based Python library for calculating weighted means, medians, standard deviations, and more. Features Plays we

Jeremy Singer-Vine 98 Dec 31, 2022
This cosmetics generator allows you to generate the new Fortnite cosmetics, Search pak and search cosmetics!

COSMETICS GENERATOR This cosmetics generator allows you to generate the new Fortnite cosmetics, Search pak and search cosmetics! Remember to put the l

ᴅᴊʟᴏʀ3xᴢᴏ 11 Dec 13, 2022
Uses MIT/MEDSL, New York Times, and US Census datasources to analyze per-county COVID-19 deaths.

Covid County Executive summary Setup Install miniconda, then in the command line, run conda create -n covid-county conda activate covid-county conda i

Ahmed Fasih 1 Dec 22, 2021
A python package which can be pip installed to perform statistics and visualize binomial and gaussian distributions of the dataset

GBiStat package A python package to assist programmers with data analysis. This package could be used to plot : Binomial Distribution of the dataset p

Rishikesh S 4 Oct 17, 2022
The Spark Challenge Student Check-In/Out Tracking Script

The Spark Challenge Student Check-In/Out Tracking Script This Python Script uses the Student ID Database to match the entries with the ID Card Swipe a

1 Dec 09, 2021
Py-price-monitoring - A Python price monitor

A Python price monitor This project was focused on Brazil, so the monitoring is

Samuel 1 Jan 04, 2022
A DSL for data-driven computational pipelines

"Dataflow variables are spectacularly expressive in concurrent programming" Henri E. Bal , Jennifer G. Steiner , Andrew S. Tanenbaum Quick overview Ne

1.9k Jan 03, 2023
This creates a ohlc timeseries from downloaded CSV files from NSE India website and makes a SQLite database for your research.

NSE-timeseries-form-CSV-file-creator-and-SQL-appender- This creates a ohlc timeseries from downloaded CSV files from National Stock Exchange India (NS

PILLAI, Amal 1 Oct 02, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 09, 2023
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Larch: Applications and Python Library for Data Analysis of X-ray Absorption Spectroscopy (XAS, XANES, XAFS, EXAFS), X-ray Fluorescence (XRF) Spectroscopy and Imaging

Larch: Data Analysis Tools for X-ray Spectroscopy and More Documentation: http://xraypy.github.io/xraylarch Code: http://github.com/xraypy/xraylarch L

xraypy 95 Dec 13, 2022
Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Data Scientist Learning Plan Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Trung-Duy Nguyen 27 Nov 01, 2022
Project under the certification "Data Analysis with Python" on FreeCodeCamp

Sea Level Predictor Assignment You will anaylize a dataset of the global average sea level change since 1880. You will use the data to predict the sea

Bhavya Gopal 3 Jan 31, 2022
BioMASS - A Python Framework for Modeling and Analysis of Signaling Systems

Mathematical modeling is a powerful method for the analysis of complex biological systems. Although there are many researches devoted on produ

BioMASS 22 Dec 27, 2022
Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Amundsen 3.7k Jan 03, 2023
Parses data out of your Google Takeout (History, Activity, Youtube, Locations, etc...)

google_takeout_parser parses both the Historical HTML and new JSON format for Google Takeouts caches individual takeout results behind cachew merge mu

Sean Breckenridge 27 Dec 28, 2022
This is an analysis and prediction project for house prices in King County, USA based on certain features of the house

This is a project for analysis and estimation of House Prices in King County USA The .csv file contains the data of the house and the .ipynb file con

Amit Prakash 1 Jan 21, 2022
talkbox is a scikit for signal/speech processing, to extend scipy capabilities in that domain.

talkbox is a scikit for signal/speech processing, to extend scipy capabilities in that domain.

David Cournapeau 76 Nov 30, 2022