peptides.py is a pure-Python package to compute common descriptors for protein sequences

Overview

peptides.py Stars

Physicochemical properties and indices for amino-acid sequences.

Actions Coverage PyPI Wheel Python Versions Python Implementations License Source Mirror GitHub issues Changelog Downloads

🗺️ Overview

peptides.py is a pure-Python package to compute common descriptors for protein sequences. It is a port of Peptides, the R package written by Daniel Osorio for the same purpose. This library has no external dependency and is available for all modern Python versions (3.6+).

🔧 Installing

Install the peptides package directly from PyPi which hosts universal wheels that can be installed with pip:

$ pip install peptides

💡 Example

Start by creating a Peptide object from a protein sequence:

>>> import peptides
>>> peptide = peptides.Peptide("MLKKRFLGALAVATLLTLSFGTPVMAQSGSAVFTNEGVTPFAISYPGGGT")

Then use the appropriate methods to compute the descriptors you want:

>>> peptide.aliphatic_index()
89.8...
>>> peptide.boman()
-0.2097...
>>> peptide.charge(pH=7.4)
1.99199...
>>> peptide.isoelectric_point()
10.2436...

Methods that return more than one scalar value (for instance, Peptide.blosum_indices) will return a dedicated named tuple:

>>> peptide.ms_whim_scores()
MSWHIMScores(mswhim1=-0.436399..., mswhim2=0.4916..., mswhim3=-0.49200...)

Use the Peptide.descriptors method to get a dictionary with every available descriptor. This makes it very easy to create a pandas.DataFrame with descriptors for several protein sequences:

>> df = pandas.DataFrame([ peptides.Peptide(s).descriptors() for s in seqs ]) >>> df BLOSUM1 BLOSUM2 BLOSUM3 BLOSUM4 ... Z2 Z3 Z4 Z5 0 0.367000 -0.436000 -0.239 0.014500 ... -0.711000 -0.104500 -1.486500 0.429500 1 -0.697500 -0.372500 -0.493 0.157000 ... -0.307500 -0.627500 -0.450500 0.362000 2 0.479333 -0.001333 0.138 0.228667 ... -0.299333 0.465333 -0.976667 0.023333 [3 rows x 66 columns] ">
>>> seqs = ["SDKEVDEVDAALSDLEITLE", "ARQQNLFINFCLILIFLLLI", "EGVNDNECEGFFSAR"]
>>> df = pandas.DataFrame([ peptides.Peptide(s).descriptors() for s in seqs ])
>>> df
    BLOSUM1   BLOSUM2  BLOSUM3   BLOSUM4  ...        Z2        Z3        Z4        Z5
0  0.367000 -0.436000   -0.239  0.014500  ... -0.711000 -0.104500 -1.486500  0.429500
1 -0.697500 -0.372500   -0.493  0.157000  ... -0.307500 -0.627500 -0.450500  0.362000
2  0.479333 -0.001333    0.138  0.228667  ... -0.299333  0.465333 -0.976667  0.023333

[3 rows x 66 columns]

💭 Feedback

⚠️ Issue Tracker

Found a bug ? Have an enhancement request ? Head over to the GitHub issue tracker if you need to report or ask something. If you are filing in on a bug, please include as much information as you can about the issue, and try to recreate the same bug in a simple, easily reproducible situation.

🏗️ Contributing

Contributions are more than welcome! See CONTRIBUTING.md for more details.

⚖️ License

This library is provided under the GNU General Public License v3.0. The original R Peptides package was written by Daniel Osorio, Paola Rondón-Villarreal and Rodrigo Torres, and is licensed under the terms of the GPLv2.

This project is in no way not affiliated, sponsored, or otherwise endorsed by the original Peptides authors. It was developed by Martin Larralde during his PhD project at the European Molecular Biology Laboratory in the Zeller team.

You might also like...
Python Package for DataHerb: create, search, and load datasets.
Python Package for DataHerb: create, search, and load datasets.

The Python Package for DataHerb A DataHerb Core Service to Create and Load Datasets.

wikirepo is a Python package that provides a framework to easily source and leverage standardized Wikidata information
wikirepo is a Python package that provides a framework to easily source and leverage standardized Wikidata information

Python based Wikidata framework for easy dataframe extraction wikirepo is a Python package that provides a framework to easily source and leverage sta

Python package for processing UC module spectral data.

UC Module Python Package How To Install clone repo. cd UC-module pip install . How to Use uc.module.UC(measurment=str, dark=str, reference=str, heade

sportsdataverse python package
sportsdataverse python package

sportsdataverse-py See CHANGELOG.md for details. The goal of sportsdataverse-py is to provide the community with a python package for working with spo

PyEmits, a python package for easy manipulation in time-series data.
PyEmits, a python package for easy manipulation in time-series data.

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Retail-Sim is python package to easily create synthetic dataset of retaile store.

Retailer's Sale Data Simulation Retail-Sim is python package to easily create synthetic dataset of retaile store. Simulation Model Simulator consists

A python package which can be pip installed to perform statistics and visualize binomial and gaussian distributions of the dataset

GBiStat package A python package to assist programmers with data analysis. This package could be used to plot : Binomial Distribution of the dataset p

VevestaX is an open source Python package for ML Engineers and Data Scientists.
VevestaX is an open source Python package for ML Engineers and Data Scientists.

VevestaX Track failed and successful experiments as well as features. VevestaX is an open source Python package for ML Engineers and Data Scientists.

nrgpy is the Python package for processing NRG Data Files

nrgpy nrgpy is the Python package for processing NRG Data Files Website and source: https://github.com/nrgpy/nrgpy Documentation: https://nrgpy.github

Comments
  • Per-residue data

    Per-residue data

    It seems that the API can only output single statistics for the entire peptide chain, but I'm interested in statistics for each residue individually. I'm wondering if it might be possible to output an array/list from some of these functions instead of always averaging them as is done now.

    enhancement 
    opened by multimeric 1
  • Hydrophobic moment is inconsistent with R version

    Hydrophobic moment is inconsistent with R version

    Computed hydrophobic moment is not the same as the one computed by R. More specifically, it seems that peptides.py always outputs 0 for the hydrophobic moment when peptide length is shorter than the set window. The returned value matches the value from R when peptide length is equal to or greater than the set window length.

    Example in python:

    >>> import peptides`
    >>> peptides.Peptide("MLK").hydrophobic_moment(window=5, angle=100)
    0.0
    >>> peptides.Peptide("AACQ").hydrophobic_moment(window=5, angle=100)
    0.0
    >>> peptides.Peptide("FGGIQ").hydrophobic_moment(window=5, angle=100)
    0.31847187610377536
    

    Example in R:

    > library(Peptides)
    > hmoment(seq="MLK", window=5, angle=100)
    [1] 0.8099386
    > hmoment(seq="AACQ", window=5, angle=100)
    [1] 0.3152961
    > hmoment(seq="FGGIQ", window=5, angle=100)
    [1] 0.3184719
    

    I think that it can be easily fixed by internally setting the window length to the length of the peptide if the latter is shorter. What I propose:

    --- a/peptides/__init__.py
    +++ b/peptides/__init__.py
    @@ -657,6 +657,7 @@ class Peptide(typing.Sequence[str]):
                   :doi:`10.1073/pnas.81.1.140`. :pmid:`6582470`.
    
             """
    +        window = min(window, len(self))
             scale = tables.HYDROPHOBICITY["Eisenberg"]
             lut = [scale.get(aa, 0.0) for aa in self._CODE1]
             angles = [(angle * i) % 360 for i in range(window)]
    
    bug 
    opened by eotovic 1
  • RuntimeWarning in auto_correlation function()

    RuntimeWarning in auto_correlation function()

    Hi, thank you for creating peptides.py.

    Some hydrophobicity tables together with certain proteins cause a runtime warning for in the function auto_correlation():

    import peptides
    
    for hydro in peptides.tables.HYDROPHOBICITY.keys():
        print(hydro)
        table = peptides.tables.HYDROPHOBICITY[hydro]
        peptides.Peptide('MANTQNISIWWWAR').auto_correlation(table)
    

    Warning (s2 == 0):

    RuntimeWarning: invalid value encountered in double_scalars
      return s1 / s2
    

    The tables concerned are: octanolScale_pH2, interfaceScale_pH2, oiScale_pH2 Some other proteins causing the same warning: ['MSYGGSCAGFGGGFALLIVLFILLIIIGCSCWGGGGYGY', 'MFILLIIIGASCFGGGGGCGYGGYGGYAGGYGGYCC', 'MSFGGSCAGFGGGFALLIVLFILLIIIGCSCWGGGGGF']

    opened by jhahnfeld 0
Releases(v0.3.1)
  • v0.3.1(Sep 1, 2022)

  • v0.3.0(Sep 1, 2022)

    Added

    • Peptide.linker_preference_profile to build a profile like used in the DomCut method from Suyama & Ohara (2002).
    • Peptide.profile to build a generic per-residue profile from a data table (#3).
    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Oct 25, 2021)

    Added

    • Peptide.counts method to get the number of occurences of each amino acid in the peptide.
    • Peptide.frequencies to get the frequencies of each amino acid in the peptide.
    • Peptide.pcp_descriptors to compute the PCP descriptors from Mathura & Braun (2001).
    • Peptide.sneath_vectors to compute the descriptors from Sneath (1966).
    • Hydrophilicity descriptors from Barley (2018).
    • Peptide.structural_class to predict the structural class of a protein using one of three reference datasets and one of four distance metrics.

    Changed

    • Peptide.aliphatic_index now supports unknown Leu/Ile residue (code J).
    • Swap order of Peptide.hydrophobic_moment arguments for consistency with profile methods.
    • Some Peptide functions now support vectorized code using numpy if available.
    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Oct 21, 2021)

Owner
Martin Larralde
PhD candidate in Bioinformatics, passionate about programming, Pythonista, Rustacean. I write poems, and sometimes they are executable.
Martin Larralde
Using Data Science with Machine Learning techniques (ETL pipeline and ML pipeline) to classify received messages after disasters.

Using Data Science with Machine Learning techniques (ETL pipeline and ML pipeline) to classify received messages after disasters.

1 Feb 11, 2022
small package with utility functions for analyzing (fly) calcium imaging data

fly2p Tools for analyzing two-photon (2p) imaging data collected with Vidrio Scanimage software and micromanger. Loading scanimage data relies on scan

Hannah Haberkern 3 Dec 14, 2022
Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Amundsen 3.7k Jan 03, 2023
Includes all files needed to satisfy hw02 requirements

HW 02 Data Sets Mean Scale Score for Asian and Hispanic Students, Grades 3 - 8 This dataset provides insights into the New York City education system

7 Oct 28, 2021
LynxKite: a complete graph data science platform for very large graphs and other datasets.

LynxKite is a complete graph data science platform for very large graphs and other datasets. It seamlessly combines the benefits of a friendly graphical interface and a powerful Python API.

124 Dec 14, 2022
A probabilistic programming library for Bayesian deep learning, generative models, based on Tensorflow

ZhuSuan is a Python probabilistic programming library for Bayesian deep learning, which conjoins the complimentary advantages of Bayesian methods and

Tsinghua Machine Learning Group 2.2k Dec 28, 2022
Analysis scripts for QG equations

qg-edgeofchaos Analysis scripts for QG equations FIle/Folder Structure eigensolvers.py - Spectral and finite-difference solvers for Rossby wave eigenf

Norman Cao 2 Sep 27, 2022
PyNHD is a part of HyRiver software stack that is designed to aid in watershed analysis through web services.

A part of HyRiver software stack that provides access to NHD+ V2 data through NLDI and WaterData web services

Taher Chegini 23 Dec 14, 2022
Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

2 Nov 20, 2021
Spectral Analysis in Python

SPECTRUM : Spectral Analysis in Python contributions: Please join https://github.com/cokelaer/spectrum contributors: https://github.com/cokelaer/spect

Thomas Cokelaer 280 Dec 16, 2022
The lastest all in one bombing tool coded in python uses tbomb api

BaapG-Attack is a python3 based script which is officially made for linux based distro . It is inbuit mass bomber with sms, mail, calls and many more bombing

59 Dec 25, 2022
Bearsql allows you to query pandas dataframe with sql syntax.

Bearsql adds sql syntax on pandas dataframe. It uses duckdb to speedup the pandas processing and as the sql engine

14 Jun 22, 2022
A collection of learning outcomes data analysis using Python and SQL, from DQLab.

Data Analyst with PYTHON Data Analyst berperan dalam menghasilkan analisa data serta mempresentasikan insight untuk membantu proses pengambilan keputu

6 Oct 11, 2022
PyIOmica (pyiomica) is a Python package for omics analyses.

PyIOmica (pyiomica) This repository contains PyIOmica, a Python package that provides bioinformatics utilities for analyzing (dynamic) omics datasets.

G. Mias Lab 13 Jun 29, 2022
Tokyo 2020 Paralympics, Analytics

Tokyo 2020 Paralympics, Analytics Thanks for checking out my app! It was built entirely using matplotlib and Tokyo 2020 Paralympics data. This applica

Petro Ivaniuk 1 Nov 18, 2021
Predictive Modeling & Analytics on Home Equity Line of Credit

Predictive Modeling & Analytics on Home Equity Line of Credit Data (Python) HMEQ Data Set In this assignment we will use Python to examine a data set

Dhaval Patel 1 Jan 09, 2022
Randomisation-based inference in Python based on data resampling and permutation.

Randomisation-based inference in Python based on data resampling and permutation.

67 Dec 27, 2022
An Indexer that works out-of-the-box when you have less than 100K stored Documents

U100KIndexer An Indexer that works out-of-the-box when you have less than 100K stored Documents. U100K means under 100K. At 100K stored Documents with

Jina AI 7 Mar 15, 2022
A script to "SHUA" H1-2 map of Mercenaries mode of Hearthstone

lushi_script Introduction This script is to "SHUA" H1-2 map of Mercenaries mode of Hearthstone Installation Make sure you installed python=3.6. To in

210 Jan 02, 2023
Nobel Data Analysis

Nobel_Data_Analysis This project is for analyzing a set of data about people who have won the Nobel Prize in different fields and different countries

Mohammed Hassan El Sayed 1 Jan 24, 2022