peptides.py is a pure-Python package to compute common descriptors for protein sequences

Overview

peptides.py Stars

Physicochemical properties and indices for amino-acid sequences.

Actions Coverage PyPI Wheel Python Versions Python Implementations License Source Mirror GitHub issues Changelog Downloads

🗺️ Overview

peptides.py is a pure-Python package to compute common descriptors for protein sequences. It is a port of Peptides, the R package written by Daniel Osorio for the same purpose. This library has no external dependency and is available for all modern Python versions (3.6+).

🔧 Installing

Install the peptides package directly from PyPi which hosts universal wheels that can be installed with pip:

$ pip install peptides

💡 Example

Start by creating a Peptide object from a protein sequence:

>>> import peptides
>>> peptide = peptides.Peptide("MLKKRFLGALAVATLLTLSFGTPVMAQSGSAVFTNEGVTPFAISYPGGGT")

Then use the appropriate methods to compute the descriptors you want:

>>> peptide.aliphatic_index()
89.8...
>>> peptide.boman()
-0.2097...
>>> peptide.charge(pH=7.4)
1.99199...
>>> peptide.isoelectric_point()
10.2436...

Methods that return more than one scalar value (for instance, Peptide.blosum_indices) will return a dedicated named tuple:

>>> peptide.ms_whim_scores()
MSWHIMScores(mswhim1=-0.436399..., mswhim2=0.4916..., mswhim3=-0.49200...)

Use the Peptide.descriptors method to get a dictionary with every available descriptor. This makes it very easy to create a pandas.DataFrame with descriptors for several protein sequences:

>> df = pandas.DataFrame([ peptides.Peptide(s).descriptors() for s in seqs ]) >>> df BLOSUM1 BLOSUM2 BLOSUM3 BLOSUM4 ... Z2 Z3 Z4 Z5 0 0.367000 -0.436000 -0.239 0.014500 ... -0.711000 -0.104500 -1.486500 0.429500 1 -0.697500 -0.372500 -0.493 0.157000 ... -0.307500 -0.627500 -0.450500 0.362000 2 0.479333 -0.001333 0.138 0.228667 ... -0.299333 0.465333 -0.976667 0.023333 [3 rows x 66 columns] ">
>>> seqs = ["SDKEVDEVDAALSDLEITLE", "ARQQNLFINFCLILIFLLLI", "EGVNDNECEGFFSAR"]
>>> df = pandas.DataFrame([ peptides.Peptide(s).descriptors() for s in seqs ])
>>> df
    BLOSUM1   BLOSUM2  BLOSUM3   BLOSUM4  ...        Z2        Z3        Z4        Z5
0  0.367000 -0.436000   -0.239  0.014500  ... -0.711000 -0.104500 -1.486500  0.429500
1 -0.697500 -0.372500   -0.493  0.157000  ... -0.307500 -0.627500 -0.450500  0.362000
2  0.479333 -0.001333    0.138  0.228667  ... -0.299333  0.465333 -0.976667  0.023333

[3 rows x 66 columns]

💭 Feedback

⚠️ Issue Tracker

Found a bug ? Have an enhancement request ? Head over to the GitHub issue tracker if you need to report or ask something. If you are filing in on a bug, please include as much information as you can about the issue, and try to recreate the same bug in a simple, easily reproducible situation.

🏗️ Contributing

Contributions are more than welcome! See CONTRIBUTING.md for more details.

⚖️ License

This library is provided under the GNU General Public License v3.0. The original R Peptides package was written by Daniel Osorio, Paola Rondón-Villarreal and Rodrigo Torres, and is licensed under the terms of the GPLv2.

This project is in no way not affiliated, sponsored, or otherwise endorsed by the original Peptides authors. It was developed by Martin Larralde during his PhD project at the European Molecular Biology Laboratory in the Zeller team.

You might also like...
Python Package for DataHerb: create, search, and load datasets.
Python Package for DataHerb: create, search, and load datasets.

The Python Package for DataHerb A DataHerb Core Service to Create and Load Datasets.

wikirepo is a Python package that provides a framework to easily source and leverage standardized Wikidata information
wikirepo is a Python package that provides a framework to easily source and leverage standardized Wikidata information

Python based Wikidata framework for easy dataframe extraction wikirepo is a Python package that provides a framework to easily source and leverage sta

Python package for processing UC module spectral data.

UC Module Python Package How To Install clone repo. cd UC-module pip install . How to Use uc.module.UC(measurment=str, dark=str, reference=str, heade

sportsdataverse python package
sportsdataverse python package

sportsdataverse-py See CHANGELOG.md for details. The goal of sportsdataverse-py is to provide the community with a python package for working with spo

PyEmits, a python package for easy manipulation in time-series data.
PyEmits, a python package for easy manipulation in time-series data.

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Retail-Sim is python package to easily create synthetic dataset of retaile store.

Retailer's Sale Data Simulation Retail-Sim is python package to easily create synthetic dataset of retaile store. Simulation Model Simulator consists

A python package which can be pip installed to perform statistics and visualize binomial and gaussian distributions of the dataset

GBiStat package A python package to assist programmers with data analysis. This package could be used to plot : Binomial Distribution of the dataset p

VevestaX is an open source Python package for ML Engineers and Data Scientists.
VevestaX is an open source Python package for ML Engineers and Data Scientists.

VevestaX Track failed and successful experiments as well as features. VevestaX is an open source Python package for ML Engineers and Data Scientists.

nrgpy is the Python package for processing NRG Data Files

nrgpy nrgpy is the Python package for processing NRG Data Files Website and source: https://github.com/nrgpy/nrgpy Documentation: https://nrgpy.github

Comments
  • Per-residue data

    Per-residue data

    It seems that the API can only output single statistics for the entire peptide chain, but I'm interested in statistics for each residue individually. I'm wondering if it might be possible to output an array/list from some of these functions instead of always averaging them as is done now.

    enhancement 
    opened by multimeric 1
  • Hydrophobic moment is inconsistent with R version

    Hydrophobic moment is inconsistent with R version

    Computed hydrophobic moment is not the same as the one computed by R. More specifically, it seems that peptides.py always outputs 0 for the hydrophobic moment when peptide length is shorter than the set window. The returned value matches the value from R when peptide length is equal to or greater than the set window length.

    Example in python:

    >>> import peptides`
    >>> peptides.Peptide("MLK").hydrophobic_moment(window=5, angle=100)
    0.0
    >>> peptides.Peptide("AACQ").hydrophobic_moment(window=5, angle=100)
    0.0
    >>> peptides.Peptide("FGGIQ").hydrophobic_moment(window=5, angle=100)
    0.31847187610377536
    

    Example in R:

    > library(Peptides)
    > hmoment(seq="MLK", window=5, angle=100)
    [1] 0.8099386
    > hmoment(seq="AACQ", window=5, angle=100)
    [1] 0.3152961
    > hmoment(seq="FGGIQ", window=5, angle=100)
    [1] 0.3184719
    

    I think that it can be easily fixed by internally setting the window length to the length of the peptide if the latter is shorter. What I propose:

    --- a/peptides/__init__.py
    +++ b/peptides/__init__.py
    @@ -657,6 +657,7 @@ class Peptide(typing.Sequence[str]):
                   :doi:`10.1073/pnas.81.1.140`. :pmid:`6582470`.
    
             """
    +        window = min(window, len(self))
             scale = tables.HYDROPHOBICITY["Eisenberg"]
             lut = [scale.get(aa, 0.0) for aa in self._CODE1]
             angles = [(angle * i) % 360 for i in range(window)]
    
    bug 
    opened by eotovic 1
  • RuntimeWarning in auto_correlation function()

    RuntimeWarning in auto_correlation function()

    Hi, thank you for creating peptides.py.

    Some hydrophobicity tables together with certain proteins cause a runtime warning for in the function auto_correlation():

    import peptides
    
    for hydro in peptides.tables.HYDROPHOBICITY.keys():
        print(hydro)
        table = peptides.tables.HYDROPHOBICITY[hydro]
        peptides.Peptide('MANTQNISIWWWAR').auto_correlation(table)
    

    Warning (s2 == 0):

    RuntimeWarning: invalid value encountered in double_scalars
      return s1 / s2
    

    The tables concerned are: octanolScale_pH2, interfaceScale_pH2, oiScale_pH2 Some other proteins causing the same warning: ['MSYGGSCAGFGGGFALLIVLFILLIIIGCSCWGGGGYGY', 'MFILLIIIGASCFGGGGGCGYGGYGGYAGGYGGYCC', 'MSFGGSCAGFGGGFALLIVLFILLIIIGCSCWGGGGGF']

    opened by jhahnfeld 0
Releases(v0.3.1)
  • v0.3.1(Sep 1, 2022)

  • v0.3.0(Sep 1, 2022)

    Added

    • Peptide.linker_preference_profile to build a profile like used in the DomCut method from Suyama & Ohara (2002).
    • Peptide.profile to build a generic per-residue profile from a data table (#3).
    Source code(tar.gz)
    Source code(zip)
  • v0.2.0(Oct 25, 2021)

    Added

    • Peptide.counts method to get the number of occurences of each amino acid in the peptide.
    • Peptide.frequencies to get the frequencies of each amino acid in the peptide.
    • Peptide.pcp_descriptors to compute the PCP descriptors from Mathura & Braun (2001).
    • Peptide.sneath_vectors to compute the descriptors from Sneath (1966).
    • Hydrophilicity descriptors from Barley (2018).
    • Peptide.structural_class to predict the structural class of a protein using one of three reference datasets and one of four distance metrics.

    Changed

    • Peptide.aliphatic_index now supports unknown Leu/Ile residue (code J).
    • Swap order of Peptide.hydrophobic_moment arguments for consistency with profile methods.
    • Some Peptide functions now support vectorized code using numpy if available.
    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Oct 21, 2021)

Owner
Martin Larralde
PhD candidate in Bioinformatics, passionate about programming, Pythonista, Rustacean. I write poems, and sometimes they are executable.
Martin Larralde
A pipeline that creates consensus sequences from a Nanopore reads. I

A pipeline that creates consensus sequences from a Nanopore reads. It clusters reads that are similar to each other and creates a consensus that is then identified using BLAST.

Ada Madejska 2 May 15, 2022
Detailed analysis on fraud claims in insurance companies, gives you information as to why huge loss take place in insurance companies

Insurance-Fraud-Claims Detailed analysis on fraud claims in insurance companies, gives you information as to why huge loss take place in insurance com

1 Jan 27, 2022
This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

1 Dec 28, 2021
Create HTML profiling reports from pandas DataFrame objects

Pandas Profiling Documentation | Slack | Stack Overflow Generates profile reports from a pandas DataFrame. The pandas df.describe() function is great

10k Jan 01, 2023
A data structure that extends pyspark.sql.DataFrame with metadata information.

MetaFrame A data structure that extends pyspark.sql.DataFrame with metadata info

Invent Analytics 8 Feb 15, 2022
The micro-framework to create dataframes from functions.

The micro-framework to create dataframes from functions.

Stitch Fix Technology 762 Jan 07, 2023
Programmatically access the physical and chemical properties of elements in modern periodic table.

API to fetch elements of the periodic table in JSON format. Uses Pandas for dumping .csv data to .json and Flask for API Integration. Deployed on "pyt

the techno hack 3 Oct 23, 2022
Minimal working example of data acquisition with nidaqmx python API

Data Aquisition using NI-DAQmx python API Based on this project It is a minimal working example for data acquisition using the NI-DAQmx python API. It

Pablo 1 Nov 05, 2021
Using approximate bayesian posteriors in deep nets for active learning

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
PySpark Structured Streaming ROS Kafka ApacheSpark Cassandra

PySpark-Structured-Streaming-ROS-Kafka-ApacheSpark-Cassandra The purpose of this project is to demonstrate a structured streaming pipeline with Apache

Zekeriyya Demirci 5 Nov 13, 2022
Stitch together Nanopore tiled amplicon data without polishing a reference

Stitch together Nanopore tiled amplicon data using a reference guided approach Tiled amplicon data, like those produced from primers designed with pri

Amanda Warr 14 Aug 30, 2022
A Big Data ETL project in PySpark on the historical NYC Taxi Rides data

Processing NYC Taxi Data using PySpark ETL pipeline Description This is an project to extract, transform, and load large amount of data from NYC Taxi

Unnikrishnan 2 Dec 12, 2021
Investigating EV charging data

Investigating EV charging data Introduction: Got an opportunity to work with a home monitoring technology company over the last 6 months whose goal wa

Yash 2 Apr 07, 2022
University Challenge 2021 With Python

University Challenge 2021 This repository contains: The TeX file of the technical write-up describing the University / HYPER Challenge 2021 under late

2 Nov 27, 2021
Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python

Driver Analysis with Factors and Forests: An Automated Data Science Tool using Python 📊

Thomas 2 May 26, 2022
A tool to compare differences between dataframes and create a differences report in Excel

similarpanda A module to check for differences between pandas Dataframes, and generate a report in Excel format. This is helpful in a workplace settin

Andre Pretorius 9 Sep 15, 2022
A library to create multi-page Streamlit applications with ease.

A library to create multi-page Streamlit applications with ease.

Jackson Storm 107 Jan 04, 2023
First steps with Python in Life Sciences

First steps with Python in Life Sciences This course material is part of the "First Steps with Python in Life Science" three-day course of SIB-trainin

SIB Swiss Institute of Bioinformatics 22 Jan 08, 2023
Stochastic Gradient Trees implementation in Python

Stochastic Gradient Trees - Python Stochastic Gradient Trees1 by Henry Gouk, Bernhard Pfahringer, and Eibe Frank implementation in Python. Based on th

John Koumentis 2 Nov 18, 2022
Statistical Rethinking: A Bayesian Course Using CmdStanPy and Plotnine

Statistical Rethinking: A Bayesian Course Using CmdStanPy and Plotnine Intro This repo contains the python/stan version of the Statistical Rethinking

Andrés Suárez 3 Nov 08, 2022