Dope Wars game engine on StarkNet L2 roll-up

Related tags

Text Data & NLPRYO
Overview

RYO

Dope Wars game engine on StarkNet L2 roll-up.

What

TI-83 drug wars built as smart contract system.

Background mechanism design notion here.

Initial exploration / walkthrough viability testing blog here.

Join in and learn about:

- Cairo. A turing-complete language for programs that become proofs.
- StarkNet. An Ethereum L2 rollup with:
    - L1 for data availability
    - State transitions executed by validity proofs that the EVM checks.

Setup

Clone this repo and use our docker shell to interact with starknet:

git clone [email protected]:dopedao/RYO.git
cd RYO
bin/shell starknet --version

The CLI allows you to deploy to StarkNet and read/write to contracts already deployed. The CLI communicates with a server that StarkNet runs, which bundles the requests, executes the program (contracts are Cairo programs), creates and aggregates validity proofs, then posts them to the Goerli Ethereum testnet. Learn more in the Cairo language and StarkNet docs here, which also has instructions for manual installation if you are not using docker.

If using VS-code for writing code, install the extension for syntax highlighting:

curl -LO https://github.com/starkware-libs/cairo-lang/releases/download/v0.4.0/cairo-0.4.0.vsix
code --install-extension cairo-0.4.0.vsix
code .

Dev

Flow:

  1. Compile the contract with the CLI
  2. Test using pytest
  3. Deploy with CLI
  4. Interact using the CLI or the explorer

File name prefixes are paired (e.g., contract, ABI and test all share comon prefix).

Compile

The compiler will check the integrity of the code locally. It will also produce an ABI, which is a mapping of the contract functions (used to interact with the contract).

bin/shell starknet-compile contracts/GameEngineV1.cairo \
    --output contracts/GameEngineV1_compiled.json \
    --abi abi/GameEngineV1_contract_abi.json

bin/shell starknet-compile contracts/MarketMaker.cairo \
    --output contracts/MarketMaker_compiled.json \
    --abi abi/MarketMaker_contract_abi.json

Test

bin/shell pytest testing/GameEngineV1_contract_test.py

bin/shell pytest testing/MarketMaker_contract_test.py

Deploy

bin/shell starknet deploy --contract contracts/GameEngineV1_compiled.json \
    --network=alpha

bin/shell starknet deploy --contract contracts/MarketMaker_compiled.json \
    --network=alpha

Upon deployment, the CLI will return an address, which can be used to interact with.

Check deployment status by passing in the transaction ID you receive:

bin/shell starknet tx_status --network=alpha --id=176230

PENDING Means that the transaction passed the validation and is waiting to be sent on-chain.

{
    "block_id": 18880,
    "tx_status": "PENDING"
}

Interact

CLI - Write (initialise markets). Set up item_id=5 across all 40 locations. Each pair has 10x more money than item quantity. All items have the same curve

bin/shell starknet invoke \
    --network=alpha \
    --address 0x01c721e3452005ddc95f10bf8dc86c98c32a224085c258024931ddbaa8a44557 \
    --abi abi/GameEngineV1_contract_abi.json \
    --function admin_set_pairs_for_item \
    --inputs 5 \
        40 \
        20 40 60 80 100 120 140 160 180 200 \
        220 240 260 280 300 320 340 360 380 400 \
        420 440 460 480 500 520 540 560 580 600 \
        620 640 660 680 700 720 740 760 780 800 \
        40 \
        200 400 600 800 1000 1200 1400 1600 1800 2000 \
        2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 \
        4200 4400 4600 4800 5000 5200 5400 5600 5800 6000 \
        6200 6400 6600 6800 7000 7200 7400 7600 7800 8000

Change 5 to another item_id in the range 1-10 to populate other curves.

CLI - Write (initialize user). Set up user_id=733 to have 2000 of item 5.

bin/shell starknet invoke \
    --network=alpha \
    --address 0x01c721e3452005ddc95f10bf8dc86c98c32a224085c258024931ddbaa8a44557 \
    --abi abi/GameEngineV1_contract_abi.json \
    --function admin_set_user_amount \
    --inputs 733 5 2000

CLI - Read (user state)

bin/shell starknet call \
    --network=alpha \
    --address 0x01c721e3452005ddc95f10bf8dc86c98c32a224085c258024931ddbaa8a44557 \
    --abi abi/GameEngineV1_contract_abi.json \
    --function check_user_state \
    --inputs 733

CLI - Write (Have a turn). User 733 goes to location 34 to sell (sell is 1, buy is 0) item 5, giving 100 units.

bin/shell starknet invoke \
    --network=alpha \
    --address 0x01c721e3452005ddc95f10bf8dc86c98c32a224085c258024931ddbaa8a44557 \
    --abi abi/GameEngineV1_contract_abi.json \
    --function have_turn \
    --inputs 733 34 1 5 100

Calling the check_user_state() function again reveals that the 100 units were exchanged for some quantity of money.

Alternatively, see and do all of the above with the Voyager browser here.

Game flow

admin ->
        initialise state variables
        lock admin power
user_1 ->
        have_turn(got_to_loc, trade_x_for_y)
            check if game finished.
            check user authentification.
            check if user allowed using game clock.
            add to random seed.
            user location update.
                decrease money count if new city.
            check for dealer dash (x %).
                check for chase dealer (x %).
                    item lost, no money gained.
            trade with market curve for location.
                decrease money/item, increase the other.
            check for any of:
                mugging (x %).
                    check for run (x %).
                        lose a percentage of money.
                gang war (x %).
                    check for fight (x %).
                        lose a percentage of money.
                cop raid (x %).
                    check for bribe (x %).
                        lose percentage of money & items held.
                find item (x %).
                    increase item balance.
                local shipment (x %).
                    increase item counts in suburb curves.
                warehouse seizure (x %).
                    decrease item counts in suburb curves.
            save next allowed turn as game_clock + n.
user2 -> (same as user_1)

Next steps

Building out parts to make a functional v1. Some good entry-level options for anyone wanting to try out Cairo.

  • Initialised multiple player states.
  • Turn rate limiting. Game has global clock that increments every time a turn occurs. User has a lockout of x clock ticks.
  • Game end criterion based on global clock.
  • Finish mappings/locations.json. Name places and implement different cost to travel for some locations.
    • Locations will e.g., be 10 cities [0, 9] each with 4 suburbs [0, 4].
    • E.g., locations 0, 11, 21, 31 are city 1. Locations 2, 12, 22, 32 are city 2. So location_id=27 is city 7, suburb 2. Free to travel to other suburbs in same city (7, 17, 37).
    • Need to create a file with nice city/subrub names for these in
  • Finish mappings/items.json. Populate and tweak the item names and item unit price. E.g., cocaine price per unit different from weed price per unit.
  • Finish mappings/initial_markets.csv. Create lists of market pair values to initialize the game with. E.g., for all 40 locations x 10 items = 400 money_count-item_count pairs as a separate file. A mapping of 600 units with 6000 money initialises a dealer in that location with 60 of the item at (6000/60) 100 money per item. This mapping should be in the ballpark of the value in items.json. The fact that values deviate, creates trade opportunities at the start of the game. (e.g., a location might have large quantity at lower price).
  • Refine both the likelihood (basis points per user turn) and impact (percentage change) that events have and treak the constanst at the top of contracts/GameEngineV1.cairo. E.g., how often should you get mugged, how much money would you lose.
  • Initialize users with money upon first turn. (e.g., On first turn triggers save of starting amount e.g., 10,000, then sets the flag to )
  • Create caps on maximum parameters (40 location_ids, 10k user_ids, 10 item_ids)
  • User authentication. E.g., signature verification.
  • Add health clock. E.g., some events lower health

Welcome:

  • PRs
  • Issues
  • Questions about Cairo
  • Ideas for the game
Code for the paper PermuteFormer

PermuteFormer This repo includes codes for the paper PermuteFormer: Efficient Relative Position Encoding for Long Sequences. Directory long_range_aren

Peng Chen 42 Mar 16, 2022
Black for Python docstrings and reStructuredText (rst).

Style-Doc Style-Doc is Black for Python docstrings and reStructuredText (rst). It can be used to format docstrings (Google docstring format) in Python

Telekom Open Source Software 13 Oct 24, 2022
SASE : Self-Adaptive noise distribution network for Speech Enhancement with heterogeneous data of Cross-Silo Federated learning

SASE : Self-Adaptive noise distribution network for Speech Enhancement with heterogeneous data of Cross-Silo Federated learning We propose a SASE mode

Tower 1 Nov 20, 2021
Fidibo.com comments Sentiment Analyser

Fidibo.com comments Sentiment Analyser Introduction This project first asynchronously grab Fidibo.com books comment data using grabber.py and then sav

Iman Kermani 3 Apr 15, 2022
The source code of HeCo

HeCo This repo is for source code of KDD 2021 paper "Self-supervised Heterogeneous Graph Neural Network with Co-contrastive Learning". Paper Link: htt

Nian Liu 106 Dec 27, 2022
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022
BookNLP, a natural language processing pipeline for books

BookNLP BookNLP is a natural language processing pipeline that scales to books and other long documents (in English), including: Part-of-speech taggin

654 Jan 02, 2023
Search-Engine - 📖 AI based search engine

Search Engine AI based search engine that was trained on 25000 samples, feel free to train on up to 1.2M sample from kaggle dataset, link below StackS

Vladislav Kruglikov 2 Nov 29, 2022
The tool to make NLP datasets ready to use

chazutsu photo from Kaikado, traditional Japanese chazutsu maker chazutsu is the dataset downloader for NLP. import chazutsu r = chazutsu.data

chakki 243 Dec 29, 2022
Learning to Rewrite for Non-Autoregressive Neural Machine Translation

RewriteNAT This repo provides the code for reproducing our proposed RewriteNAT in EMNLP 2021 paper entitled "Learning to Rewrite for Non-Autoregressiv

Xinwei Geng 20 Dec 25, 2022
PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp

Ryan Spring 114 Nov 04, 2022
code for modular summarization work published in ACL2021 by Krishna et al

This repository contains the code for running modular summarization pipelines as described in the publication Krishna K, Khosla K, Bigham J, Lipton ZC

Approximately Correct Machine Intelligence (ACMI) Lab 21 Nov 24, 2022
State of the Art Natural Language Processing

Spark NLP: State of the Art Natural Language Processing Spark NLP is a Natural Language Processing library built on top of Apache Spark ML. It provide

John Snow Labs 3k Jan 05, 2023
Natural language Understanding Toolkit

Natural language Understanding Toolkit TOC Requirements Installation Documentation CLSCL NER References Requirements To install nut you need: Python 2

Peter Prettenhofer 119 Oct 08, 2022
A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. X-Ray supports 18 languages.

WordDumb A calibre plugin that generates Word Wise and X-Ray files then sends them to Kindle. Supports KFX, AZW3 and MOBI eBooks. Languages X-Ray supp

172 Dec 29, 2022
This is a project built for FALLABOUT2021 event under SRMMIC, This project deals with NLP poetry generation.

FALLABOUT-SRMMIC 21 POETRY-GENERATION HINGLISH DESCRIPTION We have developed a NLP(natural language processing) model which automatically generates a

7 Sep 28, 2021
null

CP-Cluster Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segme

Yichun Shen 41 Dec 08, 2022
This repository contains Python scripts for extracting linguistic features from Filipino texts.

Filipino Text Linguistic Feature Extractors This repository contains scripts for extracting linguistic features from Filipino texts. The scripts were

Joseph Imperial 1 Oct 05, 2021
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE 以数据为中心的AI测评(DataCLUE) DataCLUE: A Chinese Data-centric Language Evaluation Benchmark 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE)的背景 任务描述 任务描述 实验结果

CLUE benchmark 135 Dec 22, 2022
Code for EMNLP20 paper: "ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training"

ProphetNet-X This repo provides the code for reproducing the experiments in ProphetNet. In the paper, we propose a new pre-trained language model call

Microsoft 394 Dec 17, 2022